首页 | 本学科首页   官方微博 | 高级检索  
     


Long-term, EGF-stimulated cultures of attached GFAP-positive cells derived from the embryonic mouse lateral ganglionic eminence: in vitro and transplantation studies
Authors:Eriksson C  Ericson C  Gates M A  Wictorin K
Affiliation:Wallenberg Neuroscience Center, Lund University, Sweden.
Abstract:Long-term attached cultures, prepared from mouse embryonic days 15-17 lateral ganglionic eminence, were grown in a medium including epidermal growth factor and serum, and the survival, differentiation, and migration of cells from either early or late passages were analyzed following transplantation. The cultured cells had the morphology of type I astroglial cells, with the vast majority of the cells immunoreactive for glial fibrillary acidic protein (around 90%), the intermediate filament marker nestin, and also the mouse-specific neural markers M2 and M6. The cultures were kept over 25 passages (7 months). During the first 8 passages, the growth rate gradually declined, but it increased again after passage 9 and thereafter stabilized at values similar to those observed during the initial culture period. After passages 4-6 and 18, cell suspensions were implanted cross-species into the intact or lesioned striatum of adult (passages 4-5 only) or intact striatum of neonatal rats (passages 4-6 or 18). Both early and late passage cells formed M2 (and M6)-positive transplants. In the neonatal recipients, widespread migration was seen from the needle tract throughout most of the striatum, along the internal capsule, and into the globus pallidus. In the adult striatum, the cells remained mostly around the injection tract, or within 0.4-0.6 mm from the graft core. These long-term attached cultures are interesting to compare to nonattached neurosphere cultures, and might also offer a means of propagating relatively pure populations of astroglia-like cells for basic transplantation studies or for use in experimental trials with ex vivo gene transfer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号