首页 | 本学科首页   官方微博 | 高级检索  
     


Predictive strategies in interception tasks: differences between eye and hand movements
Authors:Thomas?Eggert  author-information"  >  author-information__contact u-icon-before"  >  mailto:eggert@brain.nefo.med.uni-muenchen.de"   title="  eggert@brain.nefo.med.uni-muenchen.de"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Fernando?Rivas,Andreas?Straube
Affiliation:Department of Neurology, Klinikum Grosshadern, Marchioninistrasse 23, 81377 Munich, Germany. eggert@brain.nefo.med.uni-muenchen.de
Abstract:To investigate how the sensorimotor systems of eye and hand use position, velocity, and timing information of moving targets, we conducted a series of three experiments. Subjects performed combined eye-hand catch-up movements toward visual targets that moved with step-ramp-like velocity profiles. Visual feedback of the hand was prevented by blanking the target at the onset of the hand movement. A multiple regression was used to determine the effects of position, velocity, and timing accessed before each movement on the movement amplitudes of eye and hand. The following results were obtained: 1.The predictive strategy of eye movements could be modeled by a linear regression on the basis of the position error and the target velocity. This was not the case for hand movements, for which there was a significant partial correlation between the movement amplitude and the product of target velocity and movement duration. This correlation was not observed for eye movements suggesting that the predictive strategy of hand movements takes movement duration into account, in contrast to the strategy used in eye movements. 2.To determine whether the movement amplitudes of eye and hand depend on a categorical classification between a discrete number of movement types, we compared an experiment in which target position and velocity were distributed continuously with an experiment using only four different combinations of target position and velocity. No systematic differences between these experiments were observed. This shows that the system output is a function of continuous, interval-scaled variables rather than a function of discrete categorical variables. 3.We also analyzed the component of the movement amplitudes not explained by the regression, i.e., the residual error. The residual errors between subsequent trials were correlated more strongly for eye than for hand movements, suggesting that short-term temporal fluctuations of the predictive strategy were stronger for the eye than for the hand.
Keywords:Motor control  Eye–  hand coordination  Moving targets  Pointing  Human  Prediction
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号