首页 | 本学科首页   官方微博 | 高级检索  
     


Functional analysis of whole cell currents from hair cells of the turtle posterior crista
Authors:Goldberg Jay M  Brichta Alan M
Affiliation:Department of Neurobiology, Pharmacology, and Physiology, Illinois 60637, USA. jmg@drugs.bsd.uchicago.edu
Abstract:Controlled currents were used to study possible functions of voltage-sensitive, outwardly rectifying conductances. Results were interpreted with linearized Hodgkin-Huxley theory. Because of their more hyperpolarized resting potentials and lower impedances, type I hair cells require larger currents to be depolarized to a given voltage than do type II hair cells. "Fast" type II cells, so-called because of the fast activation of their outward currents, show slightly underdamped responses to current steps with resonant (best) frequencies of 40-85 Hz, well above the bandwidth of natural head movements. Reflecting their slower activation kinetics, type I and "slow" type II cells have best frequencies of 15-30 Hz and are poorly tuned, being critically damped or overdamped. Linearized theory identified the factors responsible for tuning quality. Our fast type II hair cells show only modestly underdamped responses because their steady-state I-V curves are not particularly steep. The even poorer tuning of our type I and slow type II cells can be attributed to their slow activation kinetics and large conductances. To study how ionic currents shape response dynamics, we superimposed sinusoidal currents of 0.1-100 Hz on a small depolarizing steady current intended to simulate resting conditions in vivo. The steady current resulted in a slow inactivation, most pronounced in fast type II cells and least pronounced in type I cells. Because of inactivation, fast type II cells have nearly passive response dynamics with low-frequency gains of 500-1,000 Momega. In contrast, type I and slow type II cells show active components in the vestibular bandwidth and low-frequency gains of 20-100 and 100-500 Momega, respectively. As there are no differences in the responses to sinusoidal currents for fast type II cells from the torus and planum, voltage-sensitive currents are unlikely to be responsible for the large differences in gains and response dynamics of afferents innervating these two regions of the peripheral zone. The low impedances and active components of type I cells may be related to the low gains and modestly phasic response dynamics of calyx-bearing afferents.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号