首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of glucose on the pharmacokinetics of intravenous chlorzoxazone in rats with acute renal failure induced by uranyl nitrate
Authors:Ahn Choong Y  Kim Eun J  Lee Inchul  Kwon Jong W  Kim Won B  Kim Sang G  Lee Myung G
Affiliation:College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.
Abstract:The effects of glucose on CYP2E1 expression in rats with acute renal failure induced by uranyl nitrate (U-ARF) have been reported. CYP2E1 was significantly induced (2.3-fold) in rats with U-ARF compared with that in control rats. In contrast, CYP2E1 expression was significantly decreased in rats with U-ARF supplied with glucose (dissolved in tap water to make 10%, w/v) in their drinking water for 5 days (U-ARFG) compared with that in rats with U-ARF. However, CYP2E1 in rats with U-ARFG was significantly greater than that in control rats. Chlorzoxazone (CZX) primarily undergoes hydroxylation, catalyzed mainly by CYP2E1, to form 6-hydroxychlorzoxazone (OH-CZX) rats. Hence, it could be expected that in rats with U-ARFG, formation of OH-CZX could significantly decrease and increase compared with those in rats with U-ARF and control rats, respectively. This expectation is proven by the following results of a study of intravenous administration of CZX at a dose 20 mg/kg to control rats and rats with U-ARF and U-ARFG. First, the total area under the plasma concentration-time curve from time zero to 8 h (AUC(0-8 h)) of OH-CZX in rats with U-ARFG (8730 microg x min/mL) was significantly greater than that in control rats (414 microg x min/mL) and significantly smaller than that in rats with U-ARF (11500 microg x min/mL). Second, the AUC(0-8 h, OH-CZX)/AUC(CZX) ratio in rats with U-ARFG (10.0) was significantly greater than that in control rats (0.252) and significantly smaller than that in rats with U-ARF (17.5). Finally, the in vitro intrinsic OH-CZX formation clearance (CL(int)) in rats with U-ARFG (27.9 mL/min/mg protein) was significantly slower than that in rats with U-ARF (36.7 mL/min/mg protein) and significantly faster than that in control rats (17.7 mL/min/mg protein).
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号