首页 | 本学科首页   官方微博 | 高级检索  
检索        


Optic tectum of the eastern garter snake, Thamnophis sirtalis. V. Morphology of brainstem afferents and general discussion
Authors:D M Dacey  P S Ulinski
Abstract:Brainstem neurons that project to the optic tectum of the eastern garter snake were identified by retrograde transport of horseradish peroxidase. The distribution and morphology of tectal afferent axons from the thalamus, pretectum, nucleus isthmi, and midbrain reticular formation were then studied by anterograde transport of horseradish peroxidase. Diencephalic projections to the tectum arise from the ventral lateral geniculate complex ipsilaterally and the ventrolateral nucleus, suprapeduncular nucleus, and nucleus of the ventral supraoptic decussation bilaterally. Three pretectal groups (the lentiform thalamic nucleus, the lentiform mesencephalic-pretectal complex and the geniculate pretectal nucleus) give rise to heavy, bilateral tectal projections. Small neurons in nucleus isthmi and large reticular neurons in nucleus lateralis profundus mesencephali also give rise to bilateral projections. Caudal to the tectum, projections arise bilaterally from the pontine and medullary tegmentum, nuclei of the lateral lemniscus, the posterior colliculus, and the sensory trigeminal nucleus. A small contralateral projection arises from the medial vestibular complex. Tectal afferents from the thalamus, pretectum, nucleus isthmi, and midbrain reticular formation had characteristic morphologies and laminar distributions within the tectum. However, these afferents fall into two groups based on their spatial organization. Afferents from the thalamus and nucleus isthmi arise from small neurons with spatially restricted, highly branched dendritic trees. Their axons terminate in single, highly branched and bouton-rich arbors about 100 micron in diameter. By contrast, afferents from the midbrain reticular formation and the pretectum arise from large neurons with long, radiate, and sparsely branched dendritic trees. Their axons course parallel to the tectal surface and emit numerous collateral branches that are distributed widely through the mediolateral and rostrocaudal extent of either the central or superficial gray layers. Each collateral bears several small, spatially disjunct clusters of boutons.
Keywords:sensorimotor coding  tectal geometry  tectal afferent neurons
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号