首页 | 本学科首页   官方微博 | 高级检索  
检索        


Unmyelinated cutaneous afferent neurons activate two types of excitatory amino acid receptor in the spinal cord of Xenopus laevis embryos
Authors:K T Sillar  A Roberts
Institution:Department of Zoology, University of Bristol, UK.
Abstract:The trunk and tail skin of Xenopus laevis embryos near the time of hatching is innervated by the mechanoreceptive free nerve endings of Rohon-Beard neurons, a homogeneous class of cutaneous primary afferent fibers. Rohon-Beard neurons have cell bodies and axons in the dorsal spinal cord, where they monosynaptically excite a population of dorsolaterally situated interneurons (Clarke and Roberts, 1984). EPSPs can be recorded in these dorsolateral interneurons following electrical stimulation of the unmyelinated neurites of Rohon-Beard neurons in the skin. The EPSPs are dual component, consisting of separate fast and slow potentials that are usually evoked synchronously and that closely resemble those described previously in Xenopus and lamprey motoneurons (Dale and Roberts, 1985; Dale and Grillner, 1986). The excitation of dorsolateral interneurons by Rohon-Beard neurons is reduced by the bath application of excitatory amino acid antagonists. Kynurenic acid suppresses both the fast and slow components of the EPSPs, while both (+/-)-2-amino-5-phosphonovaleric acid (APV) and 1 mM magnesium reduce the slow component but have little or no effect on the peak amplitude of the EPSPs. These data suggest that Rohon-Beard neurons release an excitatory amino acid neurotransmitter, which acts simultaneously at both N-methyl-D-aspartate (NMDA) and non-NMDA receptor types. This is the first direct demonstration of dual-component excitatory amino acid-mediated synaptic transmission from cutaneous primary afferent neurons in the vertebrate spinal cord. The bath application of the agonists NMDA, kainate, or quisqualate in salines containing 1 microM TTX depolarized the interneurons and reduced their input resistance, which suggests that the interneurons possess all 3 types of excitatory amino acid receptor. Kynurenic acid strongly inhibits responses to NMDA and kainate, but is relatively less effective against the larger responses of quisqualate in this system.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号