首页 | 本学科首页   官方微博 | 高级检索  
检索        


Acute and chronic morphine treatments and morphine withdrawal differentially regulate GRK2 and GRK5 gene expression in rat brain
Authors:Fan X  Zhang J  Zhang X  Yue W  Ma L
Institution:National Laboratory of Medical Neurobiology, Fudan University Medical Center, 138 Yi Xue Yuan Road, Shanghai 200032, People's Republic of China.
Abstract:Opioid agonist stimulates activation of G protein-coupled receptor kinase (GRK) and causes desensitization of opioid signaling, which plays an important role in opioid tolerance. The current study investigated the potential regulatory effects of acute and chronic morphine administration and withdrawal on GRK2 and GRK5 gene expression in rat brain. Our results showed that the initial morphine treatment (10 mg/kg) significantly increased GRK mRNA levels in cerebral cortex, hippocampus, and lateral thalamic nuclei. A significant decrease in GRK5 mRNA levels was observed in periaqueductal gray. In strong contrast, repeated administration of morphine for 9 days failed to cause any significant increase in GRK5 mRNA in any of these brain regions. Chronic morphine treatment resulted in 30-70% down-regulation of GRK2 expression in cerebral cortex, hippocampus, thalamus, and locus coeruleus, opposite to what observed with the single morphine administration. Moreover, spontaneous and naloxone-precipitated morphine withdrawal resulted in aberrant increases in GRK2 and GRK5 mRNA levels in these brain regions. Taken together, our study suggests that opioid not only induces rapid negative feedback regulation on opioid signals through activation of GRK but also exerts its impact, via controlling levels of GRK gene expression, on the regulatory machinery itself over a longer period of time in brain.
Keywords:Morphine  G protein-coupled receptor kinase  Gene expression  Opioid tolerance and dependence
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号