首页 | 本学科首页   官方微博 | 高级检索  
     


Upregulation of retinal transglutaminase during the axonal elongation stage of goldfish optic nerve regeneration
Authors:Sugitani K  Matsukawa T  Koriyama Y  Shintani T  Nakamura T  Noda M  Kato S
Affiliation:Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, Kanazawa 920-8640, Japan.
Abstract:Fish CNS neurons can repair their axons following nerve injury, whereas mammalian CNS neurons cannot regenerate, and become apoptotic within 1-2 weeks after the nerve lesion. One explanation for these differences is that one, or several molecules are upregulated in fish CNS neurons during nerve regeneration, and this same molecule is downregulated in mammalian CNS neurons before the development of apoptosis caused by nerve injury. A molecule satisfying these criteria might successfully rescue and repair the mammalian CNS neurons. In this study, we looked for such a candidate molecule from goldfish retinas. Transglutaminase derived from goldfish retina (TG(R)) was characterized as a regenerating molecule after optic nerve injury. A full-length cDNA for TG(R) was isolated from the goldfish retinal cDNA library prepared from axotomized retinas. Levels of TG(R) mRNA and protein increased only in the retinal ganglion cells (RGCs) between 10 and 40 days after optic nerve transection. Recombinant TG(R) protein enhanced neurite outgrowth from adult fish RGCs in culture. Specific interference RNA and antibodies for TG(R) inhibited neurite outgrowth both in vitro and in vivo. In contrast, the level of TG(R) protein decreased in rat RGCs within 1-3 days after nerve injury. Furthermore, the addition of recombinant TG(R) to retinal cultures induced striking neurite outgrowth from adult rat RGCs. These molecular and cellular data strongly suggest that TG(R) promotes axonal elongation at the surface of injured RGCs after optic nerve injury.
Keywords:axonal elongation   CNS regeneration   goldfish   retina   RNAi   transglutaminase
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号