首页 | 本学科首页   官方微博 | 高级检索  
     


Eating Fish and Risk of Type 2 Diabetes: A population-based, prospective follow-up study
Authors:Geertruida J. van Woudenbergh   Adriana J. van Ballegooijen   Anneleen Kuijsten   Eric J.G. Sijbrands   Frank J.A. van Rooij   Johanna M. Geleijnse   Albert Hofman   Jacqueline C.M. Witteman     Edith J.M. Feskens
Affiliation:1Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands; ;2Department of Epidemiology and Biostatistics, Erasmus Medical Center, Rotterdam, the Netherlands; ;3Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands.
Abstract:

OBJECTIVE

To investigate the relation between total fish, type of fish (lean and fatty), and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) intake and risk of type 2 diabetes in a population-based cohort.

RESEARCH DESIGN AND METHODS

The analysis included 4,472 Dutch participants aged ≥55 years without diabetes at baseline. Dietary intake was assessed with a semiquantitative food frequency questionnaire. Hazard ratios (relative risk [RR]) with 95% CIs were used to examine risk associations adjusted for age, sex, lifestyle, and nutritional factors.

RESULTS

After 15 years of follow-up, 463 participants developed type 2 diabetes. Median fish intake, mainly lean fish (81%), was 10 g/day. Total fish intake was associated positively with risk of type 2 diabetes; the RR was 1.32 (95% CI 1.02–1.70) in the highest total fish group (≥28 g/day) compared with that for non–fish eaters (Ptrend = 0.04). Correspondingly, lean fish intake tended to be associated positively with type 2 diabetes (RR highest group ]≥23 g/day] 1.30 [95% CI 1.01–1.68]; Ptrend = 0.06), but fatty fish was not. No association was observed between EPA and DHA intake and type 2 diabetes (RR highest group [≥149.4 mg/day] 1.22 [0.97–1.53]). With additional adjustment for intake of selenium, cholesterol, and vitamin D, this RR decreased to 1.05 (0.80–1.38; Ptrend = 0.77).

CONCLUSIONS

The findings do not support a beneficial effect of total fish, type of fish, or EPA and DHA intake on the risk of type 2 diabetes. Alternatively, other dietary components, such as selenium, and unmeasured contaminants present in fish might explain our results.Potential benefits of the intake of fish on the development of type 2 diabetes could be attributed to its high content of dietary n-3 polyunsaturated fatty acids, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Higher EPA and DHA quantities in the phospholipid cell membranes could increase insulin sensitivity (1). EPA and DHA supplementation increased insulin sensitivity in animal models and in some human studies (2). Results of prospective studies on intake of long-chain n-3 fatty acids and type 2 diabetes risk, however, did not show a relation (3,4). Apart from EPA and DHA, other components within fish, such as selenium and vitamin D, could also be related to type 2 diabetes. Vitamin D could be negatively and selenium could be positively associated with type 2 diabetes (5,6).Results of studies that investigated the association between fish intake and type 2 diabetes risk are inconclusive. An ecological study reported that high fish intake may reduce the risk of type 2 diabetes in populations with a high prevalence of obesity (7). Cross-sectional studies reported inverse (8,9), no (10,11), or positive (12) associations between habitual fish intake and glycemic status. Prospective evidence suggested that fish intake is either inversely (13,14) or not associated (15) with the risk of type 2 diabetes.Taken together, the effects of fish intake and EPA and DHA intake on the development of type 2 diabetes are ambiguous. Furthermore, studies conducted in this field did not report associations between different types of fish and type 2 diabetes risk. EPA and DHA are present mainly in fatty fish, which might indicate that it is also important to pay attention to the type of fish that is eaten instead of total fish intake alone.Therefore, we investigated the relation between the intake of total fish, type of fish (lean or fatty), and EPA and DHA and type 2 diabetes risk in a population of men and women aged ≥55 years. We hypothesized that fish intake and especially fatty fish intake is related inversely to the risk of type 2 diabetes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号