首页 | 本学科首页   官方微博 | 高级检索  
     

滑行窗口技术在痛觉脑诱发电位分析中的应用
引用本文:亓颖伟,罗非,张蔚婷,王颖,张景渝,陈昭燃,韩济生. 滑行窗口技术在痛觉脑诱发电位分析中的应用[J]. 北京大学学报(医学版), 2003, 35(3): 231-235
作者姓名:亓颖伟  罗非  张蔚婷  王颖  张景渝  陈昭燃  韩济生
作者单位:1. 北京大学神经科学研究所,北京大学基础医学院神经生物学系,北京,100083
2. 美国维克林大学医学院生理学与药理学系美国维克林大学医学院生理学与药理学系
3. 丹麦亚堡大学感觉运动研究中心脑成像与皮层影像实验室
基金项目:国家自然科学基金;30170307;
摘    要:目的:评价滑行窗口技术分析脑电诱发电位的能力。方法:将具有一定宽度的时间窗口延时间轴滑行,计算该窗口内的脑电电位平均值,再与对照窗口进行统计比较,以检验诱发电位是否具有统计显著性。利用该方法分析随机产生的模拟数据,计算在指定单次检验阈值下,多次统计比较导致显著性差异点连续出现的几率,以确定可使整体α值小于0.05的cluster大小。为检验该方法的有效性,在14名健康右利手志愿者右手中指给予痛或非痛电刺激,记录EEG信号并采用上述技术加以分析。结果:在整体α值确定的前提下,作为显著性判据的cluster大小随单次检验阈值与窗宽的增加而增大。依据上述方法分析真实EEG数据,确定了体感与痛觉诱发电位波形中具有统计学意义的成分,以及两种波形之间的显著性差异。结论:滑行窗口技术可有效地用于分析脑电诱发电位。

关 键 词:痛觉 脑诱发电位 滑行窗口技术 单次检验阈值

Sliding-window technique for the analysis of cerebral evoked potentials
Abstract. Sliding-window technique for the analysis of cerebral evoked potentials[J]. Journal of Peking University. Health sciences, 2003, 35(3): 231-235
Authors:Abstract
Affiliation:Neuroscience Research Institute, Department of Neurobiology, Peking University Health Science Center, Beijing 100083, China.
Abstract:Objective: To evaluate the efficiency of sliding window technique in extracting and analyzing somatosensory evoked potentials (SEP) from multichannel electroencephalogram (EEG) data. Methods: A time window of certain window size was moved along the time dimension of data sets. Values within the window were averaged for each trial, and then compared with a preset control window. The probability of randomly appeared significance resulting from repeated statistical comparison was calculated utilizing simulated EEG data sets. Cluster size (number of successive significant data points with given individual significance threshold) was determined to keep the general alpha value under 0.05. To test this procedure, multichannel EEG signals were recorded and analyzed from fourteen healthy right handed volunteers, with painful and non painful electrical stimuli delivered to the right middle fingers. Results: Cluster size increased in parallel with window size and individual statistical threshold. The major SEP components of real EEG data, as well as the difference between pain and non pain SEPs, were demonstrated to be significant with the sliding window method. Conclusion: Sliding window method is an effective tool for the analysis of SEP data.
Keywords:Sliding window Technique  Evoked potentials  Individual test threshold
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号