首页 | 本学科首页   官方微博 | 高级检索  
     


Ridaifen-SB8, a novel tamoxifen derivative,induces apoptosis via reactive oxygen species-dependent signaling pathway
Authors:Wen-zhi Guo  Isamu Shiina  Yanwen Wang  Eri Umeda  Chihiro Watanabe  Shoko Uetake  Yoshimi Ohashi  Takao Yamori  Shingo Dan
Affiliation:1. Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan;2. Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-860, Japan;3. Center for Product Evaluation, Pharmaceuticals and Medical Devices Agency, 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan
Abstract:Tamoxifen is an anticancer agent widely used for treatment of estrogen receptor (ERα)-positive breast cancer. We previously developed a novel synthesis of tamoxifen and its derivatives, named Ridaifens (RIDs). Some of them, including RID-SB8, exhibited a stronger anticancer activity than tamoxifen in ERα-positive MCF-7 cells while having lost the affinity for ERα, suggesting an ERα-independent anticancer mode of action. In this study, we investigated the underlying mechanism by which RID-SB8 exerts anticancer activity. As expected, anticancer activity of RID-SB8 was not influenced upon knockdown of ERα expression in MCF-7 cells. RID-SB8 exerted similar anticancer effects on thirteen ERα-negative cancer cell lines including human gliosarcoma SF539 cells. In SF539 cells, RID-SB8 triggered loss of mitochondrial membrane potential (ΔΨm) and progression of apoptosis accompanied by activation of caspases and translocation of apoptosis-inducing factor (AIF) to the nucleus. Furthermore, it induced reactive oxygen species (ROS), and a ROS scavenger, N-acetylcysteine (NAC), canceled loss of ΔΨm and progression of apoptosis triggered by RID-SB8. Using fifteen human cancer cell lines, we demonstrated a significant correlation between RID-SB8 concentration required for ROS production and that required for cytotoxic effect across these cell lines, but such correlation was not observed for tamoxifen. Finally, the selective induction of ROS and cytotoxic effect on cancer cells by RID-SB8 were confirmed. From these results, we concluded that RID-SB8 exerts an anticancer effect via a mode of action distinct from tamoxifen, and that RID-SB8 could become a promising anticancer lead compound which selectively induces ROS formation and apoptosis in cancer cells.
Keywords:Tamoxifen-derivative   Ridaifen   Anticancer   Apoptosis   Drug discovery
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号