首页 | 本学科首页   官方微博 | 高级检索  
检索        


Antiarrhythmics: elimination and dosage considerations in hepatic impairment
Authors:Klotz Ulrich
Institution:Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, GermanyUniversity of Tübingen, Tübingen, Germany. ulrich.klotz@ikp-stuttgart.de
Abstract:Many drugs, including most antiarrhythmics (some of which are now of limited clinical use) are eliminated by the hepatic route. If liver function is impaired, it can be anticipated that hepatic clearance will be delayed, which can lead to more pronounced drug accumulation with multiple dosing. Consequently, the potential risks of adverse events could be increased, especially as antiarrhythmics have a narrow therapeutic index. The present review summarises the available pharmacokinetic data on the most popular antiarrhythmic drugs to identify the enzymes involved in the metabolism of the various agents and confirm whether liver disease affects their elimination. Despite long usage of some of these drugs (e.g. amiodarone, diltiazem, disopyramide, procainamide and quinidine), surprisingly few data are available in patients with liver disease, making it difficult to give recommendations for dosage adjustment. In contrast, for carvedilol, lidocaine (lignocaine), propafenone and verapamil, sufficient clinical studies have been performed. For these drugs, a marked decrease in systemic and/or oral clearance and significant prolongation of the elimination half-life have been documented, which should be counteracted by a 2- to 3-fold reduction of the dosage in patients with moderate to severe liver cirrhosis. For sotalol, disopyramide and procainamide, renal clearance contributes considerably to overall elimination, suggesting that dosage reductions are probably unnecessary in patients with liver disease as long as renal function is normal. The hepatically eliminated antiarrhythmics are metabolised mainly by different cytochrome P450 (CYP) isoenzymes (e.g. CYP3A4, CYP1A2, CYP2C9, CYP2D6) and partly also by conjugations. As the extent of impairment in clearance is in the same range for all of these agents, it could be assumed that they have a common vulnerability and that, consequently, hepatic dysfunction will affect CYP-mediated phase I pathways in a similar fashion. The severity of liver disease has been estimated clinically by the validated Pugh score, and functionally by calculation of the clearance of probe drugs (e.g. antipyrine). Both approaches can be helpful in estimating/predicting impairments in drug metabolism, including antiarrhythmics. In conclusion, hepatic impairment decreases the elimination of many antiarrhythmics to such an extent that dosage reductions are highly recommended in such populations, especially in patients with cirrhosis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号