首页 | 本学科首页   官方微博 | 高级检索  
检索        


Anti-CD40-induced inflammatory E-cadherin+ dendritic cells enhance T cell responses and antitumour immunity in murine Lewis lung carcinoma
Authors:Yong Zhang  Xiaoyan Hu  Yue Hu  Kai Teng  Kai Zhang  Yamei Zheng  Xiaohua Hong  Kunwu Yu  Yan Wang  Li Liu
Abstract:

Background

Agonistic CD40 antibodies have been demonstrated to activate antigen-presenting cells (APCs) and enhance antitumour T cell responses, thereby providing a new therapeutic option in cancer immunotherapy. In agonistic CD40 antibody-mediated inflammatory responses, a novel subset of E-cadherin + dendritic cells (DCs) has been identified, and little is known about the role of these DCs in tumour immunity. This study investigated the effect of anti-CD40-mediated inflammatory E-cadherin + DCs in murine Lewis lung carcinoma (LLC).

Methods

The phenotype and characteristics of anti-CD40-mediated inflammatory E-cadherin + DCs isolated from the anti-CD40 model were assessed in vitro. The antitumour activity of E-cadherin + DCs were evaluated in vivo by promoting the differentiation of effector CD4+ T cells, CEA-specific CD8+ T cells and CD103+ CD8+ T cells and assessing their resistance to tumour challenge, including variations in tumour volume and survival curves.

Results

Here, we demonstrated that anti-CD40-mediated E-cadherin + inflammatory DCs accumulate in the lungs of Rag1 KO mice and were able to stimulate naïve CD4+ T cells to induce Th1 and Th17 cell differentiation and polarisation and to inhibit regulatory T cell and Th2 responses. Importantly, with the adoptive transfer of E-cadherin + DCs into the Lewis lung cancer model, the inflammatory DCs increased the Th1 and Th17 cell responses and reduced the Treg cell and Th2 responses. Interestingly, following the injection of inflammatory E-cadherin + DCs, the CD103+ CD8+ T cell and CEA-specific CD8+ T cell responses increased and exhibited potent antitumour immunity.

Conclusions

These findings indicate that anti-CD40-induced E-cadherin + DCs enhance T cell responses and antitumour activity in non-small cell lung cancer (NSCLC)-bearing mice and may be used to enhance the efficacy of DC-based peptide vaccines against NSCLC.

Electronic supplementary material

The online version of this article (doi:10.1186/s13046-015-0126-9) contains supplementary material, which is available to authorized users.
Keywords:E-cadherin  Dendritic cell  T cell  Lung cancer  Activity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号