首页 | 本学科首页   官方微博 | 高级检索  
     


Dietary long-chain n-3 fatty acids modify blood and cardiac phospholipids and reduce protein kinase-C-delta and protein kinase-C-epsilon translocation
Authors:Judé Sébastien  Martel Eric  Vincent Fanny  Besson Pierre  Couet Charles  Ogilvie Gregory K  Pinault Michelle  De Chalendar Catherine  Bougnoux Philippe  Richard Serge  Champeroux Pascal  Crozatier Bertrand  Le Guennec Jean-Yves
Affiliation:CERB, Centre de Recherches Biologiques, Baugy, F-18800, France.
Abstract:The effects of an n-3 PUFA-enriched diet on cardiac cell membrane phospholipid fraction compositions and associated protein kinase-C (PKC) translocation modification have never been studied in higher mammals. This is of importance since membrane fatty acid composition has been shown to influence PKC signalling pathways. In the present study, we have tested whether the incorporation of n-3 PUFA in cardiac membrane phospholipids correlated with changes in the fatty acid composition of diacylglycerols (DAG) and led to a differential translocation of PKC isoforms. Two groups of five dogs were fed the standard diet supplemented with palm oil or fish oil for 8 weeks. Dogs fed a fish oil-enriched diet showed a preferential incorporation of EPA and, to a lesser extent, of DHA, at the expense of arachidonic acid, in the circulating TAG, plasma phospholipids, erythrocyte phospholipids and cardiomyocyte phospholipid fractions. Analysis of 1,2-DAG fatty acid composition also indicated a preferential enrichment of EPA compared with DHA. Associated with these results, a reduction in the expression of PKC-delta and PKC-epsilon isoforms in the particulate fractions was observed whereas no effect was seen for PKC-alpha and PKC-zeta. We conclude that a fish oil-enriched diet induces a modification in fatty acid composition of cardiac membrane phospholipids, associated with a differential translocation of PKC isoforms. These results can be explained by the production of structurally different DAG that may participate in some of the protective effects of n-3 PUFA against various chronic diseases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号