首页 | 本学科首页   官方微博 | 高级检索  
检索        


Influences of enteral nutrition combined with probiotics on gut microflora and barrier function of rats with abdominal infection
Authors:Shen Tong-Yi  Qin Huan-Long  Gao Zhi-Guang  Fan Xiao-Bing  Hang Xiao-Ming  Jiang Yan-Qun
Institution:Department of Surgery,Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China
Abstract:AIM: To investigate the influences of enteral, parenteral nutrition and probiotics delivered by gut on intestinal microecology, epithelial tight junctions, immune and barrier function of rats with abdominal infection. METHODS: Rat abdominal infection models established with cecal ligation and perforation method, were divided into three groups: parenteral nutrition (PN group, n = 7), PN+enteral nutrition (EN group, n = 7) and PN + EN + probiotics (probiotics group, n = 7) via the needle jejunostomy and neck vein for five days. The total nutritional supplement of the three groups was isonitrogenic and isocaloric. Probiotics was delivered by jejunostomy 10 mL/d (1 x 10(8) cfu/mL). The rats were killed on the sixth day. The feces in the cecum were cultured for anaerobic bacterial growth and analyzed with bacterial group DNA fingerprint profile with random amplified polymorphic DNA. The transmembrane binding proteins (occludin) and IgA level in plasma cells of intestine epithelium in colon and terminal ileum were measured by an immunohistochemistry method. The ultrastructure of intestinal epithelial tight junctions in colon and small intestine was observed by electron-microscopy. Vena cava blood and the homogenated tissue of liver, lung and mesenteric lymph nodes were cultured to determine the bacterial translocations, and endotoxin in the blood from portal vein was detected. RESULTS: (1) The amount of bacteria of gut species in EN group and probiotic group was higher than that in PN group. The DNA-profiles in EN group and probiotic group were similar to that of normal rats. The number of DNA-profiles in probiotics group was much more than that in PN group and EN group. Moreover, there were strange stripes in PN group. (2) The expression of occludin and IgA in the small and large intestine in EN group (2.309 +/- 0.336, 15.440 +/- 2.383) and probiotic group (2.938 +/- 0.515, 16.230 +/- 3.183) was improved as compared with PN group (1.207 +/- 0.587, P < 0.05, 11.189 +/- 2.108, P < 0.01). The expression of occludin in probiotic group (intestine: 2.93 +/- 0.515; cecum: 3.40 +/- 0.617) was higher than that in EN group (intestine: 2.309 +/- 0.336; cecum: 2.076 +/- 0.670; P < 0.05). The expression of IgA, especially in EN group (intestine: 15.440 +/- 2.383) and probiotic EN group (large intestine: 12.516 +/- 1.542) significantly increased as compared with PN group (intestine: 11.189 +/- 2.108; cecum: 10.160 +/- 1.643; P<0.01). The intestinal epithelial tight junctions and microvilli of the probiotic group were more intact than those in the PN group. (3) The bacterial translocations in blood, liver, lung and mesenteric lymph nodes, and the levels of endotoxin were significantly reduced in probiotic (0.082 +/- 0.029) and EN (0.125 +/- 0.040) groups as compared with PN group (0.403 +/- 0.181, P < 0.05). CONCLUSION: Application of EN combined with probiotics could improve the expression of transmembrane binding proteins (occludin) and IgA, correct the intestinal flora disturbance, maintain gut barrier functions and tight junctions, and reduce the occurrence of gut bacterial translocation.
Keywords:Probiotics  Enteral nutrition  Gut flora  Transmembrane binding proteins  Gut barrier function
本文献已被 CNKI 维普 万方数据 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号