Insulin-like growth factor-I promotes migration in human androgen-independent prostate cancer cells via the alphavbeta3 integrin and PI3-K/Akt signaling |
| |
Authors: | Montagnani Marelli Marina Moretti Roberta M Procacci Patrizia Motta Marcella Limonta Patrizia |
| |
Affiliation: | Center for Endocrinological Oncology, Institute of Endocrinology, University of Milano, I-20133 Milano, Italy. |
| |
Abstract: | In its phase of androgen-independence, prostate carcinoma is characterized by a high proliferation rate and by a strong ability to give rise to metastases. IGF-I has been shown to exert a potent mitogenic action on prostate cancer. We investigated whether IGF-I might also affect the motility of prostate cancer cells and defined the mechanism of action. We found that IGF-I promotes the migratory capacity of androgen-independent prostate cancer cells through the activation of its specific receptor, IGF-IR. This effect was accompanied by a change in cell morphology (as revealed by scanning electron microscopy), and by a rearrangement of the actin cytoskeleton. The treatment of cells with the PI3-K inhibitor, LY294002, counteracted the pro-migratory activity of IGF-I. Experiments were then performed to clarify whether the integrin, alphavbeta3, could be involved in the action of IGF-I. We demonstrated that: a) the IGF-I-induced migration of cells is completely antagonized by an antibody specifically blocking the function of alphavbeta3; b) IGF-I increases alphavbeta3 immunofluorescence at the level of cell membranes, and this effect is counteracted by LY294002; and c) IGF-I increases alphavbeta3 protein levels. Our results demonstrate that IGF-I promotes the motility of androgen-independent prostate cancer cells by modulating alphavbeta3 integrin activation/expression; these effects are mediated by the PI3-K/Akt signaling pathway. This study: a) supports a crucial role for IGF-I in the progression of the pathology towards the highly metastatic phase; and b) provides an additional rationale basis for the development of therapeutic strategies directed at the IGF-I/IGF-IR system in the treatment of androgen-independent prostate cancer. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|