首页 | 本学科首页   官方微博 | 高级检索  
检索        


Lipopolysaccharide heterogeneity and escape mechanisms ofNeisseria meningitidis: possible consequences for vaccine development
Institution:1. Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China;2. TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China;3. Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China;4. Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Poland
Abstract:We wanted to compare the potential protective capacity of antibodies to meningococcal lipopolysaccharides (LPS). The frequency of occurrence and degree of expression of the epitopes recognized by murine monoclonal antibodies (MAbs) to immunotypes L3,7,9 (9-2-L379) and L8 (2-1-L8) and to the LPS inner core (216-Lc and 217-Lc), were determined among 77 consecutive Norwegian meningococcal patient isolates from 1995. The immunotype L3,7,9 was strongly expressed by 95% of the isolates, whereas L8 was weakly to moderately expressed by 9%. The inner core epitopes, were widely distributed among the serogroup B organisms, but were proved weakly expressed. The bactericidal activity of the four MAbs to various selected strains, was found to correlate positively with the quantity of the LPS epitopes recognized by these four MAbs in the bacteria. When tested in the serum bactericidal assay (SBA), often a few percent of the colonies of the inocula survived high concentrations of the MAbs. The results indicate that escape from the bactericidal action could be achieved through: (i) selection of variants not expressing the LPS-epitope of the actual MAb, (ii) a relative reduction in the density of the LPS-epitope achieved by dilution with another LPS structure or (iii) other factors, not yet understood. In conclusion, antibodies to the L3,7,9 epitope seem to be of importance for protection, whereas antibodies to the epitopes of the LPS inner core or immunotype L8, are not likely to offer protection alone. However, in order to prevent escape through alteration of the LPS pattern of the microbes, various LPS structures should probably be present in the OMV vaccine.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号