首页 | 本学科首页   官方微博 | 高级检索  
     


A heteroskedasticity and autocorrelation robust F test using an orthonormal series variance estimator
Authors:Yixiao Sun
Affiliation:Department of Economics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093‐0508, USA. E‐mail: yisun@ucsd.edu
Abstract:Summary The paper develops a new heteroskedasticity and autocorrelation robust test in a time series setting. The test is based on a series long‐run variance matrix estimator that involves projecting the time series of interest onto a set of orthonormal bases and using the sample variance of the projection coefficients as the long‐run variance estimator. When the number of orthonormal bases K is fixed, a finite‐sample‐corrected Wald statistic converges to a standard F distribution. When K grows with the sample size, the usual uncorrected Wald statistic converges to a chi‐square distribution. We show that critical values from the F distribution are second‐order correct under the conventional increasing smoothing asymptotics. Simulations show that the F approximation is more accurate than the chi‐square approximation in finite samples.
Keywords:Asymptotic expansion  F‐distribution  Fixed‐smoothing asymptotics  Heteroskedasticity and autocorrelation robust standard error  Increasing‐smoothing asymptotics  Long‐run variance  Non‐parametric series method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号