首页 | 本学科首页   官方微博 | 高级检索  
     


Dissemination bottleneck in a murine model of inhalational anthrax
Authors:Plaut Roger D  Kelly Vanessa K  Lee Gloria M  Stibitz Scott  Merkel Tod J
Affiliation:Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA.
Abstract:Inhalational anthrax is caused by the sporulating bacterium Bacillus anthracis. A current model for progression in mammalian hosts includes inhalation of bacterial spores, phagocytosis of spores in the nasal mucosa-associated lymphoid tissue (NALT) and lungs by macrophages and dendritic cells, trafficking of phagocytes to draining lymph nodes, germination of spores and multiplication of vegetative bacteria in the NALT and lymph nodes, and dissemination of bacteria via the bloodstream to multiple organs. In previous studies, the kinetics of infection varied greatly among mice, leading us to hypothesize the existence of a bottleneck past which very few spores (perhaps only one) progress to allow the infection to proceed. To test this hypothesis, we engineered three strains of B. anthracis Sterne, each marked with a different fluorescent protein, enabling visual differentiation of strains grown on plates. Mice were infected with a mixture of the three strains, the infection was allowed to proceed, and the strains colonizing the organs were identified. Although the inoculum consisted of approximately equal numbers of each of the three strains, the distal organs were consistently colonized by a majority of only one of the three strains, with the dominant strain varying among animals. Such dominance of one strain over the other two was also found at early time points in the cervical lymph nodes but not in the mediastinal lymph nodes. These results support the existence of a bottleneck in the infectious process.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号