Abstract: | IntroductionRecent network-based analyses suggest that schizophrenia symptoms are intricately connected and interdependent, such that central symptoms can activate adjacent symptoms and increase global symptom burden. Here, we sought to identify key clinical and neurobiological factors that relate to symptom organization in established schizophrenia. MethodsA symptom comorbidity network was mapped for a broad constellation of symptoms measured in 642 individuals with a schizophrenia-spectrum disorder. Centrality analyses were used to identify hub symptoms. The extent to which each patient’s symptoms formed clusters in the comorbidity network was quantified with cluster analysis and used to predict (1) clinical features, including illness duration and psychosis (positive symptom) severity and (2) brain white matter microstructure, indexed by the fractional anisotropy (FA), in a subset (n = 296) of individuals with diffusion-weighted imaging (DWI) data. ResultsGlobal functioning, substance use, and blunted affect were the most central symptoms within the symptom comorbidity network. Symptom profiles for some patients formed highly interconnected clusters, whereas other patients displayed unrelated and disconnected symptoms. Stronger clustering among an individual’s symptoms was significantly associated with shorter illness duration (t = 2.7; P = .0074), greater psychosis severity (ie, positive symptoms expression) (t = −5.5; P < 0.0001) and lower fractional anisotropy in fibers traversing the cortico-cerebellar-thalamic-cortical circuit (r = .59, P < 0.05). ConclusionSymptom network structure varies over the course of schizophrenia: symptom interactions weaken with increasing illness duration and strengthen during periods of high positive symptom expression. Reduced white matter coherence relates to stronger symptom clustering, and thus, may underlie symptom cascades and global symptomatic burden in individuals with schizophrenia. |