首页 | 本学科首页   官方微博 | 高级检索  
检索        


3D MDEFT imaging of the human brain at 4.7 T with reduced sensitivity to radiofrequency inhomogeneity.
Authors:David L Thomas  Enrico De Vita  Ralf Deichmann  Robert Turner  Roger J Ordidge
Institution:Wellcome Trust High Field MR Research Laboratory, Department of Medical Physics and Bioengineering, University College London, London WC1N 3AR, UK. thomas@medphys.ucl.ac.uk
Abstract:A modification to the 3D modified driven equilibrium Fourier transform (MDEFT) imaging technique is proposed that reduces its sensitivity to RF inhomogeneity. This is especially important at high field strengths where RF focusing effects exacerbate B(1) inhomogeneity, causing significant signal nonuniformity in the images. The adiabatic inversion pulse used during the preparation period of the MDEFT sequence is replaced by a hard (nonadiabatic) pulse with a nominal flip angle of 130 degrees. The spatial inhomogeneity of the hard pulse preparation compensates for the inhomogeneity of the excitation pulses. Uniform signal intensity is obtained for a wide range of B(1) amplitudes and the high CNR characteristic of MDEFT is retained. The new approach was validated by numerical simulations and successfully applied to human brain imaging at 4.7 T, resulting in high-quality T(1)-weighted images of the whole human brain at high field strength with uniform signal intensity and contrast, despite the presence of significant RF inhomogeneity.
Keywords:high field MRI  T1‐weighted imaging  RF inhomogeneity  human brain imaging  structural brain imaging
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号