首页 | 本学科首页   官方微博 | 高级检索  
检索        


Taste-evoked Fos expression in nitrergic neurons in the nucleus of the solitary tract and reticular formation of the rat
Authors:Travers Susan P  Travers Joseph B
Institution:Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio 43210-1267, USA. travers.3@osu.edu
Abstract:The current investigation used double labeling for NADPHd and Fos-like immunoreactivity to define the relationship between nitric oxide synthase-containing neural elements and taste-activated neurons in the nucleus of the solitary tract (NST) and subjacent reticular formation (RF). Stimulation of awake rats with citric acid and quinine resulted in significant increases in the numbers of double-labeled neurons in both the NST and RF, suggesting that some medullary gustatory neurons utilize nitric oxide (NO) as a transmitter. Overall, double-labeled neurons were most numerous in the caudal reaches of the gustatory zone of the NST, where taste neurons receive inputs from the IXth nerve, suggesting a preferential role for NO neurons in processing gustatory inputs from the posterior oral cavity. However, double-labeled neurons also exhibited a preferential distribution depending on the gustatory stimulus. In the NST, double-labeled neurons were most numerous in the rostral central subnucleus after either stimulus but had a medial bias after quinine stimulation. In the RF, after citric acid stimulation, there was a cluster of double-labeled neurons with distinctive large soma in the parvicellular division of the lateral RF, subjacent to the rostral tip of NST. In contrast, in response to quinine, there was a cluster of double-labeled neurons with much smaller soma in the intermediate zone of the medial RF, a few hundred micrometers caudal to the citric acid cluster. These differential distributions of double-labeled neurons in the NST and RF suggest a role for NO in stimulus-specific gustatory autonomic and oromotor reflex circuits.
Keywords:nucleus of the solitary tract  parvicellular reticular formation  intermediate reticular formation  licking  gaping  nitric oxide synthase
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号