首页 | 本学科首页   官方微博 | 高级检索  
     


Immunocytochemical localization of protein kinase C isozymes in rat brain
Authors:F L Huang  Y Yoshida  H Nakabayashi  W S Young  K P Huang
Affiliation:Section on Metabolic Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892.
Abstract:Recently, we isolated 3 protein kinase C (PKC) isozymes from rat brain (Huang et al., 1986a). Using isozyme-specific antibodies for immunoblot, we have determined the relative levels of each isozyme in various regions of the rat brain (Huang et al., 1987b). The present paper describes the cellular distributions of PKC isozymes in rat brain as determined by light microscopic immunocytochemistry. Staining with PKC antibodies revealed strong immunoreactivities in neuronal somata and their dendrites and weak to no reaction in axon and the astroglial structures. In the cerebellum, the type I PKC antibodies stained the Purkinje cell bodies and dendrites; the type II PKC antibodies stained the granule cells; and the type III PKC antibody stained both Purkinje and granule cells. In the cerebral cortex, all antibodies stained neurons resembling pyramidal cells and their apical dendrites in layers II to VI, while layer I was nearly devoid of staining. However, the various isozyme-specific antibodies revealed distinct laminar distribution patterns of the positively stained neurons, and the type III PKC-positive neurons exhibited a higher density than those of type I or II PKC-positive ones, especially in layer II of cingulate (retrosplenial) and piriform cortices. In the hippocampal formation, both pyramidal cells of the hippocampus and granule cells of the dentate gyrus were stained by all PKC antibodies. Subcellularly, type III PKC appeared mostly in the cytoplasm of these neurons, whereas type I and II PKC seemed to associate with the nucleus as well. In the olfactory bulb, both type II and III PKC antibodies stained the periglomerular and granular cells, and the latter also stained the mitral cells. The distinct cellular and subcellular distribution of PKC isozymes suggests that each isozyme plays a unique role in the various neural functions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号