首页 | 本学科首页   官方微博 | 高级检索  
检索        


Carbon-11 HOMADAM: a novel PET radiotracer for imaging serotonin transporters
Authors:Jarkas Nachwa  Votaw John R  Voll Ronald J  Williams Larry  Camp Vernon M  Owens Michael J  Purselle David C  Bremner J Douglas  Kilts Clinton D  Nemeroff Charles B  Goodman Mark M
Institution:Center for Positron Emission Tomography, Emory University, Atlanta, GA 30322, USA.
Abstract:Carbon-11-labeled N,N-dimethyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine (HOMADAM) was synthesized as a new serotonin transporter (SERT) imaging agent. METHODS: Carbon-11 was introduced into HOMADAM by preparation of N-methyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine followed by alkylation with carbon-11 iodomethane. Binding affinities of HOMADAM and the radiolabeling substrate, N-methyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine, were determined in cDNA transfected cells expressing human SERT, dopamine transporters (DAT) and norepinephrine transporters NET using 3H]citalopram, (125)I]RTI-55 and 3H]nisoxetine, respectively. MicroPET brain imaging was performed in monkeys. Arterial plasma metabolites of HOMADAM were analyzed in a rhesus monkey by high-performance liquid chromatography (HPLC). RESULTS: HOMADAM displayed high affinity for the SERT (Ki = 0.6 nM). N-methyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine displayed moderate affinity for the SERT (Ki = 15.11 nM). The affinities of HOMADAM for the DAT and NET were 2000- and 253-fold lower, respectively, than for the SERT. 11C]HOMADAM was prepared from 11C]iodomethane in approximately 25% radiochemical yield (decay-corrected to end of bombardment). MicroPET brain imaging studies in monkeys demonstrated that 11C]HOMADAM uptake was selectively localized in the midbrain, thalamus, pons, caudate, putamen and medulla. The midbrain-to-cerebellum, pons-to-cerebellum, thalamus-to-cerebellum and putamen-to-cerebellum ratios at 85 min were 4.2, 2.8, 2.3 and 2.0, respectively. HOMADAM binding achieved quasi-equilibrium at 45 min. Radioactivity in the SERT-rich regions of monkey brain was displaceable with R,S-citalopram. Radioactivity in the DAT-rich regions of monkey brain was not displaceable with the DAT ligand RTI-113. Radioactivity in the SERT-rich regions of monkey brain was displaceable with the R,S-reboxetine, a NET ligand with a high nanomolar affinity for SERT. Arterial plasma metabolites of HOMADAM were analyzed in a rhesus monkey by HPLC and displayed a single peak that corresponded to unmetabolized HOMADAM. CONCLUSION: HOMADAM is an excellent candidate for PET primate imaging of brain SERTs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号