首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of spontaneous excitatory synaptic currents in pyramidal cells of rat prelimbic cortex
Authors:Wang Z  Zheng P
Affiliation:State Key Laboratory of Medical Neurobiology, Fudan University Medical Center, 138 Yixueyuan Road, 200032, Shanghai, China.
Abstract:Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded with the whole-cell patch-clamp technique from 41 pyramidal cells in the layers V-VI of the prelimbic (PL) cortex. The sEPSCs occurred randomly and the averaged frequency in 41 cells was 1.81+/-0.27 Hz. The amplitude distribution was skewed toward larger events and could be adequately fitted by a sum of two or three Gaussian distributions, but they could not be fitted by a sum of Gaussian distributions with equidistant separation in all cells studied (n=24). In eight of 24 cells, after the transformation of the amplitudes into logarithms, the skewed histogram became bell-shaped and could be adequately fitted by a single Gaussian distribution, whereas in the other 16 cells, after the transformation the histograms were still skewed. However, for those latter cells, when the logarithms were transformed into difference, the distribution of the differences in 15 of 16 cells became bell-shaped and could be adequately fitted by a single Gaussian distribution. The pie distribution of different rise times within one cell in 1 ms bin showed that there were four different patterns of the rise time distribution. The amplitude distribution of the sEPSCs was unchanged in 10 of 22 cells after TTX, but in the other 12 cells, it was changed significantly. However, for these cells although TTX had a marked effect, it could not change the skewed distribution into a single Gaussian distribution in case of both original and transformed data.
Keywords:Prelimbic cortex   Pyramidal cell   Whole-cell patch-clamp   Spontaneous excitatory postsynaptic current
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号