首页 | 本学科首页   官方微博 | 高级检索  
     

米氏消除药物静脉给药的药动学方程数值解
引用本文:林中,苏银法. 米氏消除药物静脉给药的药动学方程数值解[J]. 药学进展, 2004, 28(12): 565-567
作者姓名:林中  苏银法
作者单位:温州市第二人民医院临床药学科,浙江,温州,325000
摘    要:的:获得(一级并行)米氏消除药物静脉注射给药时的血药浓度近似解。方法:根据四阶Runge-Kutt。算法,采用Excel软件编写基于药动学参数的程序。结果:输出某周期或稳态任一次给药后的预期血药浓度。结论:方法操作简单,结果可靠,可作为(一级并行)米氏消除药物静脉注射给药时药动学方程的数值解法。

关 键 词:米氏消除 Runge-Kutta算法 静脉给药 药物动力学 Excel软件
文章编号:1001-5094(2004)12-0565-03
修稿时间:2004-06-14

A Numerical Method for Plasma Concentration of Drugs Obeying Michaelis-Menten Clearance Kinetics by Bolus Intravenous Administration
LIN Zheng,SU Yin-fa. A Numerical Method for Plasma Concentration of Drugs Obeying Michaelis-Menten Clearance Kinetics by Bolus Intravenous Administration[J]. Progress in Pharmaceutical Sciences, 2004, 28(12): 565-567
Authors:LIN Zheng  SU Yin-fa
Abstract:Objective: To establish a numerical method for plasma concentration of drugs obeying parallel first order and Michaelis-Menten clearance kinetics by bolus intravenous administration. Methods: Microsoft Excel was used to write a Microsoft Excel spreadsheet based on the four stage Runge-Kutta algorithm. Results: After inputting the pharmacokinetic parameters(Vm, Km, Vd, k), the Microsoft Excel spreadsheet displayed plasma concentration at mini-interval after the administration. Conclusion: The four stage Runge-Kutta algorithm is a reliable numerical method for plasma concentration of drugs obeying parallel first order and Michaelis-Menten clearance kinetics by intravenous administration.
Keywords:Michaelis-Menten clearance   Runge-Kutta algorithm   Bolus intravenous administration   Pharmacokinetics   Excel software
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号