首页 | 本学科首页   官方微博 | 高级检索  
     


Expression profiles of hippocampal regenerative sprouting-related genes and their regulation by E-64d in a developmental rat model of penicillin-induced recurrent epilepticus
Authors:Hong Ni  Shou-yun RenLe-ling Zhang  Qi SunTian Tian  Xing Feng
Affiliation:Neurology Laboratory, Soochow University Affiliated Children''s Hospital, Laboratory of Aging and Nervous Diseases, Soochow University, Suzhou 215003, China
Abstract:E-64d (a calpain and autophagy inhibitor) has previously been shown safe for the treatment of Alzheimer's disease in humans. In the present study, the potential protective mechanism of E-64d on hippocampal aberrant mossy fiber sprouting was examined in a developmental rat model of penicillin-induced recurrent epilepticus. A seizure was induced by penicillin every other day in Sprague–Dawley rats from postnatal day 21 (P21). The rats were randomly assigned into the control group (CONT1), the control plus E-64d (CONT2), the seizure group (EXP1) and the seizure plus E-64d (EXP2). On P51, mossy fiber sprouting and related gene expression in hippocampus were assessed by Timm staining and real-time RT-PCR methods, respectively. To validate the RT-PCR results, western blot analysis was performed on selected genes. E-64d obviously suppressed the aberrant mossy fiber sprouting in the supragranular region of dentate gyrus and CA3 subfield of hippocampus. Among the total twelve genes, six genes were strongly up- (MT-3, ACAT1, clusterin and ApoE) or down- (ZnT-1 and PRG-3) regulated by developmental seizures (EXP1) compared with that in the CONT1. Up-regulation of ApoE and Clusterin was blocked by pretreatment with E-64d both in mRNA and protein levels. Further, E-64d-pretreated seizure rats (EXP2) showed a significant downregulation of mRNA expression of PRG-1, PRG-3 and PRG-5, cathepsin B and ApoE, as well as up-regulated nSMase and ANX7 in hippocampus when compared with EXP1 rats. The results of the present study suggest that E-64d, an elective inhibitor of calpain and autophagy, is potentially useful in the treatment of developmental seizure-induced brain damage both by regulating abnormal zinc signal transduction and through the modulation of altered lipid metabolism via ApoE/clusterin pathway in hippocampus.
Keywords:Zinc homeostasis   Lipid metabolism   Enzyme   Plasticity related genes   Mossy fiber spouting   E-64d
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号