Protective role of neurotrophins in experimental inflammation of the rat gut |
| |
Authors: | Reinshagen M Rohm H Steinkamp M Lieb K Geerling I Von Herbay A Flämig G Eysselein V E Adler G |
| |
Affiliation: | Department of Medicine I, University of Ulm, Ulm, Germany. max.reinshagen@medizin.uni-ulm.de |
| |
Abstract: | BACKGROUND & AIMS: Sensory neuropeptides modulate the mucosal response to inflammation in experimental colitis. Because nerve growth factor (NGF) regulates the expression of neuropeptides such as substance P and calcitonin gene-related peptide (CGRP) and is implicated as a link between the nervous system and the immune system in the inflammatory process, we investigated the functional role of NGF and neurotrophin-3 during experimental colitis. METHODS: Immunoneutralizing antibodies specific for NGF and neurotrophin (NT)-3 were used to block their endogenous activity. Mild trinitrobenzene sulfonic acid (TNBS) colitis was induced, and damage scores were assessed after 1 week. Neuropeptide content in the colon and NT messenger RNA (mRNA) expression were determined. RESULTS: The pretreatment with anti-NGF or anti-NT-3 caused a significant 2-3-fold increase in the severity of the experimental inflammation as assessed by a macroscopic damage score, histologic ulceration score, and myeloperoxidase activity in the tissue. CGRP, but not substance P, contents in the colon were significantly reduced by NGF immunoneutralization. NGF mRNA was slightly up-regulated after NGF immunoneutralization, but NT-3 mRNA was unchanged by NT-3 immunoneutralization. CGRP mRNA was not significantly changed after 1 week of colitis by NGF or NT-3 immunoneutralization, whereas beta-preprotachykinin mRNA was up-regulated after immunoneutralization. CONCLUSIONS: These findings suggest a regulatory role for NGF and NT-3 in experimental inflammation of the gut. This effect may be partly caused by the reduction of mucosal CGRP content caused by the NGF blockade. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|