首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of oligopeptide aldehydes on intracellular Ca2+ concentration in rat pituitary cells
Affiliation:1. Heim Pál Pediatric Hospital, Hungarian Academy of Sciences, Budapest, Hungary;2. Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
Abstract:We investigated the effects of some synthetic tripeptide aldehydes, earlier shown to influence pituitary hormone secretion and 45Ca2+ uptake, on the intracellular free Ca2+ concentration ([Ca2+]i) of rat anterior pituitary cells in suspension. Boc-D-Phen- Leu-Phenylalaninal or Boc-D-Phe-Leu-Prolinal in the tested range of 1–100 or 200 μM, respectively, were ineffective in influencing basal [Ca2+]i but caused a concentration-dependent inhibition in K+ (25 mM)-induced [Ca2+]i elevation. The IC50 of both effects was about 50 μM. In contrast, they did not interfere with the stimulation caused by the calcium channel agonist BAY K 8644 and were also ineffective in influencing the receptor-mediated stimulus of thyrotropin-releasing hormone on [Ca2+]i. On the basis of the present and foregoing results the possible involvement of calcium channels is discussed, but different mechanisms mediating the tripeptide aldehyde inhibition are also considered. A third tripeptide aldehyde. Boc-Gln-Leu-Lysinal (Boc-GLL), showed ionophore-like properties. This nontoxic substance caused a dose-dependent rise up to 400% (at 100 μM) in [Ca2+]i. Its effect is not mediated by voltage-dependent calcium channels, as it cannot be inhibited either by the classicalp calcium channel antagonists verapamil and nifedipine, or by the above-mentioned inhibitory tripeptide aldehydes. When we decreased the extracellular Ca2+ concentration by the addition of 4 mM EGTA, the effect was inverted and Boc-GLL caused a large fall in [Ca2+]i. We suggest that Boc-GLL may open cell membrane pores through which Ca2+ moves along the concentration gradient. The calcium flux can be inhibited by 20 mM Mg2+ and 100 μM Co2+ but not by 500 μM La3+. Thus, tripeptide aldehydes. depending on their structure, may decrease or increase [Ca2+]i via uncoventional mechanisms and may serve as tools for dissecting details of cell calcium homeostasis.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号