首页 | 本学科首页   官方微博 | 高级检索  
     


Tissue distribution of N-acetyltransferase 1 and 2 catalyzing the N-acetylation of 4-aminobiphenyl and O-acetylation of N-hydroxy-4-aminobiphenyl in the congenic rapid and slow acetylator Syrian hamster
Authors:Hein David W  Doll Mark A  Nerland Donald E  Fretland Adrian J
Affiliation:Department of Pharmacology & Toxicology and James Graham Brown Cancer Center, The University of Louisville School of Medicine, Louisville, Kentucky 40292, USA.
Abstract:N-acetyltransferase 1 (NAT1) and 2 (NAT2) enzymes catalyzing both deactivation (N-acetylation) and activation (O-acetylation) of arylamine carcinogens such as 4-aminobiphenyl (ABP) were investigated in a Syrian hamster model congenic at the NAT2 locus. NAT2 catalytic activities (measured with p-aminobenzoic acid) were significantly (P < 0.001) higher in rapid than slow acetylators in all tissues (except heart and prostate where activity was undetectable in slow acetylators). NAT1 catalytic activities (measured with sulfamethazine) were low but detectable in most tissues tested and did not differ significantly between rapid and slow acetylators. ABP N-acetyltransferase activity was detected in all tissues of rapid acetylators but was below the limit of detection in all tissues of slow acetylators except liver where it was about 15-fold lower than rapid acetylators. ABP N-acetyltransferase activities correlated with NAT2 activities (r2 = 0.871; P < 0.0001) but not with NAT1 activities (r2 = 0.132; P > 0.05). Levels of N-hydroxy-ABP O-acetyltransferase activities were significantly (P < 0.05) higher in rapid than slow acetylator cytosols for many but not all tissues. The N-hydroxy-ABP O-acetyltransferase activities correlated with ABP N-acetyltransferase activities (r2 = 0.695; P < 0.0001) and NAT2 activities (r2 = 0.521, P < 0.0001) but not with NAT1 activities (r2 = 0.115; P > 0.05). The results suggest widespread tissue distribution of both NAT1 and NAT2, which catalyzes both N- and O-acetylation. These conclusions are important for interpretation of molecular epidemiological investigations into the role of N-acetyltransferase polymorphisms in various diseases including cancer.
Keywords:acetylation polymorphism  NAT2 genotype  bladder cancer  pancreatic cancer
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号