首页 | 本学科首页   官方微博 | 高级检索  
     


Cortical porosity is higher in boys compared with girls at the distal radius and distal tibia during pubertal growth: an HR-pQCT study
Authors:Nishiyama Kyle K  Macdonald Heather M  Moore Sarah A  Fung Tak  Boyd Steven K  McKay Heather A
Affiliation:Schulich School of Engineering, University of Calgary, Calgary, Canada.
Abstract:The aim of this study was to determine the sex- and maturity-related differences in bone microstructure and estimated bone strength at the distal radius and distal tibia in children and adolescents. We used high-resolution pQCT to measure standard morphological parameters in addition to cortical porosity (Ct.Po) and estimated bone strength by finite element analysis. Participants ranged in age from 9 to 22 years (n = 212 girls and n = 186 boys) who were scanned annually for either one (11%) or two (89%) years at the radius and for one (15%), two (39%), or three (46%) years at the tibia. Participants were grouped by the method of Tanner into prepubertal, early pubertal, peripubertal, and postpubertal groups. At the radius, peri- and postpubertal girls had higher cortical density (Ct.BMD; 9.4% and 7.4%, respectively) and lower Ct.Po (-118% and -56%, respectively) compared with peri- and postpubertal boys (all p < 0.001). Peri- and postpubertal boys had higher trabecular bone volume ratios (p < 0.001) and larger cortical cross-sectional areas (p < 0.05, p < 0.001) when compared with girls. Based upon the load-to-strength ratio (failure load/estimated fall force), boys had lower risk of fracture than girls at every stage except during early puberty. Trends at the tibia were similar to the radius with differences between boys and girls in Ct.Po (p < 0.01) and failure load (p < 0.01) at early puberty. Across pubertal groups, within sex, the most mature girls and boys had higher Ct.BMD and lower Ct.Po than their less mature peers (prepuberty) at both the radius and tibia. Girls in early, peri-, and postpubertal groups and boys in peri- and postpubertal groups had higher estimates of bone strength compared with their same-sex prepubertal peers (p < 0.001). These results provide insight into the sex- and maturity-related differences in bone microstructure and estimated bone strength.
Keywords:ADOLESCENT GROWTH  BONE MICROSTRUCTURE  BONE STRENGTH  HR‐pQCT  FINITE ELEMENT ANALYSIS
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号