首页 | 本学科首页   官方微博 | 高级检索  
     


Lemniscal recurrent and transcortical influences on cuneate neurons
Authors:Canedo A  Mariño J  Aguilar J
Affiliation:Department of Physiology, Faculty of Medicine, Laboratory of Neuroscience and Neuronal Computation, Cajal Institute (CSIC), Santiago de Compostela, Spain. fsancala@usc.es
Abstract:Intracellular recordings were obtained from cuneate neurons of chloralose-anesthetized, paralysed cats to study the synaptic responses induced by electrical stimulation of the contralateral medial lemniscus. From a total of 178 cells sampled, 109 were antidromically fired from the medial lemniscus, 82 of which showed spontaneous bursting activity. In contrast, the great majority (58/69) of the non-lemniscal neurons presented spontaneous single spike activity. Medial lemniscus stimulation induced recurrent excitation and inhibition on cuneolemniscal and non-lemniscal cells. Some non-lemniscal neurons were activated by somatosensory cortex and inhibited by motor cortex stimulation. Some other non-lemniscal cells that did not respond to medial lemniscus stimulation in control conditions were transcortically affected by stimulating the medial lemniscus after inducing paroxysmal activity in the sensorimotor cortex. These findings indicate that different sites in the sensorimotor cortex can differentially influence the sensory transmission through the cuneate, and that the distinct available corticocuneate routes are selected within the cerebral cortex. From a total of 92 cells tested, the initial effect induced by low-frequency stimulation of the sensorimotor cortex was inhibition on most of the cuneolemniscal neurons (32/52) and excitation on the majority of the non-lemniscal cells (25/40). The fact that a substantial proportion of cuneolemniscal and non-lemniscal cells was excited and inhibited, respectively, suggests that the cerebral cortex may potentiate certain inputs by exciting and disinhibiting selected groups of cuneolemniscal cells. Finally, evidence is presented demonstrating that the tendency of the cuneolemniscal neurons to fire in high-frequency spike bursts is due to different mechanisms, including excitatory synaptic potentials, recurrent activation through lemniscal axonal collaterals, and via the lemnisco-thalamo-cortico-cuneate loop.A corticocuneate network circuit to explain the results is proposed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号