Abstract: | Virulent strains of Pseudomonas aeruginosa are either of a nonmucoid, lipopolysaccharide (LPS)-smooth or mucoid, LPS-rough phenotype, and immunity to these different variants is efficiently mediated by antibodies specific to O antigens or mucoid exopolysaccharide (also called alginate), respectively. In addition to O side chains and core polysaccharide components, the LPS of P. aeruginosa also contains neutral-polysaccharide components that express antigenic determinants common to many clinical isolates. We evaluated antibodies specific to neutral polysaccharides for the ability to mediate opsonic killing and protective immunity. Antibodies to these antigens mediated opsonic killing of poorly virulent nonmucoid LPS-rough isolates but not of isogenic strains with either a LPS-smooth or a mucoid phenotype. Antibodies to neutral-polysaccharide antigens also failed to protect neutropenic mice from challenge with modest doses of LPS-smooth P. aeruginosa strains (< 10(3) CFU per mouse), whereas O-antigen-specific antibodies were highly protective. Antibodies to neutral polysaccharides deposited significantly (P = 0.002) more C3 onto LPS-rough strains than did antibodies to O side chains, but this situation was reversed when isogenic LPS-smooth strains were tested. Given that protective immunity against P. aeruginosa must be directed against either nonmucoid LPS-smooth strains or mucoid LPS-rough strains, it appears that antibodies specific to neutral-polysaccharide antigens do not protect against P. aeruginosa infection. Lack of protection is likely due to the ability of both O side chains and mucoid exopolysaccharide (alginate) to interfere with the opsonic killing activity of neutral-polysaccharide-specific antibodies. |