Abstract: | Nontypeable Haemophilus influenzae is a primary pathogen in both acute otitis media (OM) and chronic OM, yet the pathogenesis of this disease is not fully understood. Although fimbriae have been observed on all clinical OM isolates examined to date, their role in pathogenesis remains unclear. Therefore, the gene which codes for the fimbrial subunit protein (fimbrin) in nontypeable H. influenzae 1128 was isolated, cloned, and sequenced. The nucleotide sequence of the fimbrin gene was found to contain an open reading frame of 1,077 bp which would encode a mature fimbrin protein consisting of 338 amino acid with a calculated molecular mass of 36.4 kDa. The translated amino acid sequence was found to be homologous with various OmpA proteins of other gram-negative bacteria, and algorithmic analysis predicted that this protein is organized as a coiled coil. To directly test whether fimbriae are involved in pathogenesis, the fimbrin gene was disrupted, and the biological consequences of disruption were absence of both expression of the fimbrial appendage and the specific immunogold labeling thereof with antisera directed against isolated fimbrial protein, reduced adherence to human oropharyngeal cells in vitro, augmented clearance from the tympanum post-transbullar inoculation, and significantly reduced induction of OM post-intranasal inoculation in a chinchilla model compared with the fimbriated parent strain. We additionally find that either passive immunization or active immunization against isolated fimbrial protein confers partial protection against transbullar challenge. A Western blot (immunoblot) indicated a degree of serological relatedness among fimbrin proteins of 15 nontypeable and type b isolates. These data suggest that fimbrin could be useful as a component of a vaccine to protect against OM. |