GABAB receptor activation desensitizes postsynaptic GABAB and A1 adenosine responses in rat hippocampal neurones |
| |
Authors: | Jonathon P. Wetherington Nevin A. Lambert |
| |
Affiliation: | Department of Pharmacology and Toxicology, Medical College of Georgia, and Medical Research Service, Augusta VAMC, Augusta, GA 30912-2300, USA |
| |
Abstract: | Whole-cell recordings of EPSCs and G-protein-activated inwardly rectifying (GIRK) currents were made from cultured hippocampal neurones to determine the effect of long-term agonist treatment on the presynaptic and postsynaptic responses mediated by GABAB receptors (GABABRs). GABABR-mediated presynaptic inhibition was unaffected by agonist (baclofen) treatment for up to 48 h, and was desensitized by about one-half after 96 h. In contrast, GABABR-mediated GIRK currents were desensitized by a similar amount after only 2 h of agonist treatment. In addition, presynaptic inhibition mediated by A1 adenosine receptors (A1Rs) was unaffected by prolonged GABABR activation, whereas A1R-mediated GIRK currents were desensitized. Desensitization of postsynaptic GABABR and A1R responses was blocked by the GABABR antagonist (1-(S)-3,4-dichlorophenylethyl)amino-2-(S) hydroxypropyl-p-benzyl-phosphonic acid (CGP 55845A), but not by the A1R antagonist cyclopentyldipropylxanthine (DPCPX). GIRK current amplitude could be partially restored after baclofen treatment by either coapplication of baclofen and adenosine, or intracellular infusion of the non-hydrolysable GTP analog 5'-guanylylimidodiphosphate (Gpp(NH)p). Short-term (4-24 h) baclofen treatment also significantly desensitized the inhibition of postsynaptic voltage-gated calcium channels by activation of GABABRs or A1Rs. These results show that responses mediated by GABABRs and A1Rs desensitize differently in presynaptic and postsynaptic compartments, and demonstrate the heterologous desensitization of postsynaptic A1R responses. |
| |
Keywords: | |
|
|