The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance |
| |
Authors: | Craig Twist Roger Eston |
| |
Affiliation: | (1) Department of Sport and Exercise Sciences, University College Chester, Chester, UK;(2) University of Exeter, School of Sport and Health Sciences, Exeter, UK |
| |
Abstract: | Exercise-induced muscle damage (EIMD) is a common occurrence following activities with a high eccentric component. Alterations to the torque–velocity relationship following EIMD would appear to have serious implications for athletic performance, particularly as they relate to impairment of maximal intensity exercise. However, this has been studied infrequently. The purpose of this study was to assess the effects of EIMD on maximal intermittent sprint performance. Ten male participants (age 22.4±3.2 years, height 178.6±5.2 cm, mass 80.6±10.7 kg) performed 10×6 s cycle ergometer sprints, interspersed with 24 s recovery against a load corresponding to 0.10 kp/kg and 10×10 m sprints from a standing start, each with 12 s active (walking) recovery. All variables were measured immediately before and at 30 min, 24, 48 and 72 h following a plyometric exercise protocol comprising of 10×10 maximal counter movement jumps. Repeated measures ANOVA showed significant changes over time (all P<0.05) for perceived soreness, plasma creatine kinase activity (CK), peak power output (PPO), sprint time and rate of fatigue. Soreness was significantly higher (P<0.01) than baseline values at all time intervals (3.1, 4.9, 5.5 and 3.2 at 30 min, 24, 48 and 72 h, respectively). CK was significantly elevated (P<0.05) at 24 h (239 IU/l) and 48 h (245 IU/l) compared to baseline (151 IU/l). PPO was significantly lower (P<0.05) than baseline (1,054 W) at all time intervals (888, 946, 852 and 895 W, at 30 min, 24, 48 and 72 h, respectively). The rate of fatigue over the ten cycling sprints was reduced compared to baseline, with the greatest reduction of 48% occurring at 48 h (P<0.01). This was largely attributed to the lower PPO in the initial repetitions, resulting in a lower starting point for the rate of fatigue. Values returned to normal at 72 h. Sprint times over 10 m were higher (P<0.05) at 30 min, 24 h and 48 h compared to baseline (1.96 s) with values corresponding to 2.01, 2.02 and 2.01 at 30 min, 24 h and 48 h, respectively. Values returned to baseline by 72 h. The results provide further evidence that, following a plyometric, muscle-damaging exercise protocol, the ability of the muscle to generate power is reduced for at least 3 days. This is also manifested by a small, but statistically significant reduction in very short-term (2 s) intermittent sprint running performance. These findings have implications for appropriate training strategies in multiple sprint sports. |
| |
Keywords: | Plyometrics Peak power output Sprinting Muscle damage |
本文献已被 PubMed SpringerLink 等数据库收录! |
|