首页 | 本学科首页   官方微博 | 高级检索  
     

皮肤科医师与深度卷积神经网络诊断色素痣和脂溢性角化病皮肤镜图像比较
引用本文:王诗琪 刘洁 朱晨雨 舒畅 周航宁 谢凤英 徐涛 晋红中. 皮肤科医师与深度卷积神经网络诊断色素痣和脂溢性角化病皮肤镜图像比较[J]. 中华皮肤科杂志, 2018, 51(7): 486-489. DOI: 10.3760/cma.j.issn.0412-4030.2018.07.002
作者姓名:王诗琪 刘洁 朱晨雨 舒畅 周航宁 谢凤英 徐涛 晋红中
作者单位:1. 中国医学科学院北京协和医学院北京协和医院2. 中国医学科学院北京协和医院皮肤科3. 北京协和医院4. 北京航空航天大学宇航学院图像处理中心5. 北京航空航天大学6. 中国医学科学院基础医学研究所 北京协和医学院基础学院 流行病及统计学系
基金项目:中国医学科学院医学与健康科技创新工程项目
摘    要:【摘要】 目的 比较深度卷积神经网络(CNN)与皮肤科医师对色素痣和脂溢性角化病的诊断准确率。方法 使用5 094幅色素痣和脂溢性角化病(SK)的皮肤镜图像对CNN网络ResNet?50通过迁移学习进行训练,建立CNN二分类模型,并应用该模型对30幅色素痣和30幅SK的皮肤镜图像进行自动分类。同时,95位经过皮肤镜培训的有经验的皮肤科医师结合临床皮损图片对上述CNN自动分类的60幅皮肤镜图像进行判读。比较二者的诊断准确率,并对错误分类的图像做进一步统计分析。结果 CNN自动分类模型对色素痣和SK的皮肤镜图像的分类准确率分别为100%(30/30)和76.67%(23/30),总准确率为88.33%(53/60);95位皮肤科医师的诊断准确率平均值分别为82.98%(25.8/30)和85.96%(24.9/30),总准确率为84.47%(50.7/60)。CNN自动分类模型与95位皮肤科医师对色素痣和SK的诊断准确率差异无统计学意义(χ2 = 0.38,P > 0.05)。CNN错误分类的皮肤镜图像被分为3类,即特殊类型(如皮损色素含量多、角化明显),具有典型特征但存在干扰因素,具有典型特征尚找不到错误分类的原因。结论 CNN自动分类模型在色素痣和SK皮肤镜图像的二分类任务中的表现与有经验的皮肤科医师水平相当。CNN错误分类的原因仍需皮肤科医师与人工智能专业人员共同探索。

关 键 词:  色素  角化病  脂溢性  皮肤镜检查  神经网络(计算机)  人工智能  深度卷积神经网络  
收稿时间:2017-11-14

Comparison of diagnostic performance of dermatologists versus deep convolutional neural network for dermoscopic images of pigmented nevus and seborrheic keratosis
Wang-Shiqi Jie Liu. Comparison of diagnostic performance of dermatologists versus deep convolutional neural network for dermoscopic images of pigmented nevus and seborrheic keratosis[J]. Chinese Journal of Dermatology, 2018, 51(7): 486-489. DOI: 10.3760/cma.j.issn.0412-4030.2018.07.002
Authors:Wang-Shiqi Jie Liu
Abstract:Wang Shiqi, Liu Jie, Zhu Chenyu, Shu Chang, Zhou Hangning, Xie Fengying, Xu Tao, Jin HongzhongDepartment of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (Wang SQ, Liu J, Zhu CY, Shu C, Jin HZ); Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (Liu J); Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China (Zhou HN, Xie FY); Department of Epidemiology and Statistics, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China (Xu T)Corresponding author: Liu Jie, Email: Liujie04672@pumch.cn【Abstract】 Objective To compare the diagnostic accuracies of deep convolutional neural network (CNN) and dermatologists for pigmented nevus and seborrheic keratosis. Methods CNN network ResNet?50 was trained with 5 094 dermoscopic images of pigmented nevus and seborrheic keratosis using transfer learning, so as to establish a CNN two?classification model. Then, this model was applied to the automatic classification of 30 dermoscopic images of pigmented nevus and 30 dermoscopic images of seborrheic keratosis. Meanwhile, in combination with clinical photos of skin lesions, 95 experienced dermatologists who had received dermoscopy training gave their diagnosis for the above 60 dermoscopic images. The diagnostic accuracies were compared between the two methods, and misclassified images were further analyzed. Results The CNN automatic classification model had the diagnostic accuracies of 100% (30/30) and 76.67% (23/30) for pigmented nevus and seborrheic keratosis respectively, and the total accuracy was 88.33% (53/60). The average diagnostic accuracies of 95 dermatologists were 82.98%(25.8/30)and 85.96% (24.9/30) for pigmented nevus and seborrheic keratosis respectively, and the total accuracy was 84.47% (50.7/60). There were no significant differences in the diagnostic accuracies for pigmented nevus or seborrheic keratosis between the CNN automatic classification model and 95 dermatologists(χ2 = 0.38, P > 0.05). The dermoscopic images misclassified by CNN were divided into 3 categories: special?type lesions with high pigment content and marked keratosis, typical skin lesions with interference factors, and typical skin lesions without definite reasons for misclassification. Conclusions The performance of CNN automatic classification model is similar to that of experienced dermatologists in the two classification of pigmented nevus and seborrheic keratosis. The reasons for misclassification by CNN still need to be explored by dermatologists and professionals in artificial intelligence.
Keywords:Nevus   pigmented   Keratosis   seborrheic   Dermoscopy   Neural networks (computer)   Artificial intelligence   Convolutional neural network  
点击此处可从《中华皮肤科杂志》浏览原始摘要信息
点击此处可从《中华皮肤科杂志》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号