首页 | 本学科首页   官方微博 | 高级检索  
检索        


Vitamin E inhibits anti-Fas-induced phosphatidylserine oxidation but does not affect its externalization during apoptosis in Jurkat T cells and their phagocytosis by J774A.1 macrophages
Authors:Serinkan Behice F  Tyurina Yulia Y  Babu Hareesh  Djukic Mirjana  Quinn Peter J  Schroit Alan  Kagan Valerian E
Institution:Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.
Abstract:Apoptosis and phagocytosis of apoptotic cells provide for effective and harmless clearance of unwanted or damaged cells in the body. Preferential oxidation of one particular class of phospholipids, phosphatidylserine (PS), is a typical trait of both oxidant- and nonoxidant-induced apoptosis. PS oxidation is likely to play an important role in phagocytosis either by affecting PS externalization acting as an "eat me" signal or by more effective recognition of apoptotic cells by macrophage receptors. This implies that antioxidants effective in inhibiting PS oxidation may affect PS externalization and/or effective removal of apoptotic cells. Therefore, it is essential to determine whether vitamin E, the major lipid-soluble antioxidant of membranes, inhibits PS oxidation, and hence blocks apoptosis/phagocytosis. To test this, we studied the effects of vitamin E on PS oxidation and signaling using a model of anti-Fas-triggered apoptosis in Jurkat T cells. We found that incubation of cells with vitamin E (0.25-50 micro M) resulted in its integration into cells to reach physiologically relevant concentrations. Using labeling of cell phospholipids with oxidation-sensitive and fluorescent cis-parinaric acid (PnA), we found that anti-Fas exposure caused significant and selective oxidation of PnA-PS in Jurkat T cells (22 +/- 2.1% of its content in nonexposed cells). Vitamin E protected PnA-PS against oxidation in a concentration-dependent way such that at 25 micro M and 50 micro M, a complete inhibition of anti-Fas-induced PS oxidation was achieved. At all concentrations used, vitamin E had no effect on either biomarkers of anti-Fas-induced apoptosis (PS externalization, nuclear fragmentation) or phagocytosis of anti-Fas-induced apoptotic cells by J774A.1 macrophages. We conclude that vitamin E does not significantly interfere with extrinsic (death receptor-triggered) pathways of apoptosis and does not affect phagocytosis of anti-Fas-triggered apoptotic cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号