首页 | 本学科首页   官方微博 | 高级检索  
     


Protection of Luteolin-7-O-Glucoside Against Doxorubicin-Induced Injury Through PTEN/Akt and ERK Pathway in H9c2 Cells
Authors:Hong Yao  Zhimei Shang  Penghong Wang  Shuixian Li  Qianyun Zhang  Huiqin Tian  Dongmei Ren  Xiuzhen Han
Affiliation:1.Department of Pharmacology, School of Pharmaceutical Sciences,Shandong University,Jinan,China;2.Department of Oncology,Wei Fang Traditional Chinese Hospital,Weifang,China;3.Department of Natural Product Chemistry, School of Pharmaceutical Sciences,Shandong University,Jinan,China
Abstract:Luteolin-7-O-glucoside (LUTG) was isolated from the plants of Dracocephalum tanguticum Maxim. Previous research has showed that LUTG pretreatment had a significant protective effect against doxorubicin (DOX)-induced cardiotoxicity by reducing intracellular calcium overload and leakage of creatine kinase and lactate dehydrogenase. But the underlying mechanisms have not been completely elucidated. In the present study, we investigated the effects of LUTG on H9c2 cell morphology, viability, apoptosis, reactive oxygen species generation, and the mitochondrial transmembrane potentials. The expression of p-PTEN, p-Akt, p-ERK, p-mTOR, and p-GSK-3β were detected by Western blotting. Compared with DOX alone treatment group, the morphological injury and apoptosis of the cells in groups treated by DOX plus LUTG were alleviated, cell viability was increased, ROS generation was lowered remarkably, and mitochondrial depolarization was mitigated. In DOX group, the expression of p-PTEN was lower than normal group and the expression of p-Akt and p-ERK was higher than normal group. In the groups treated with LUTG (20 μM), the expression of p-PTEN was upregulated and the expression of p-Akt, p-ERK, p-mTOR, and p-GSK-3β was downregulated. These results indicated that the protective effects of LUTG against DOX-induced cardiotoxicity may be related to anti-apoptosis through PTEN/Akt and ERK pathway.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号