首页 | 本学科首页   官方微博 | 高级检索  
     


Increase in AMPA receptor-mediated miniature EPSC amplitude after chronic NMDA receptor blockade in cultured hippocampal neurons
Authors:Kato Kenichi  Sekino Yuko  Takahashi Hideto  Yasuda Hiroki  Shirao Tomoaki
Affiliation:Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan.
Abstract:Synaptic scaling has been reported as scaling up of AMPA receptors (AMPAR)-mediated miniature excitatory postsynaptic currents (mEPSCs) induced by blockade of action potentials or AMPAR. Here, we show a novel type of synaptic scaling induced by N-methyl-D-aspartate receptors (NMDAR) blockade. In the present study, we analyzed AMPAR-mediated mEPSCs of D-(-)-2-amino-5-phosphonopentanoic acid (AP5)-treated hippocampal neurons (16 days in vitro) for 48 h in low-density cultures, using a whole-cell patch-clamp technique. The mEPSC amplitudes recorded from chronic AP5-treated neurons (25.5+/-0.3 pA; n=30 neurons) were significantly larger than that recorded from control neurons (21.6+/-0.2 pA; n=30 neurons, p<0.05), whereas the frequency of mEPSCs was not changed. Immunocytochemistry showed that the number of synapsin I clusters of AP5-treated neurons was not different from that of control neurons. Cumulative amplitude histograms revealed that the amplitude of mEPSCs was scaled multiplicatively after AP5 treatment. GluR2-lacking AMPAR were not involved in the scaling observed here. Together, our data indicate that NMDAR activity, as well as AMPAR activity, is involved in the negative feedback plasticity of AMPAR-mediated synaptic activity.
Keywords:Synaptic plasticity   mEPSC   NMDA receptor   AMPA receptor   AP5   Neuronal culture
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号