首页 | 本学科首页   官方微博 | 高级检索  
     

ARIMA与LSTM模型在医院出院人次预测中的比较研究
引用本文:王淑平,李敏,杜敏,刘杉,梁颖,罗建伟. ARIMA与LSTM模型在医院出院人次预测中的比较研究[J]. 公共卫生与预防医学, 2021, 32(1): 18-21
作者姓名:王淑平  李敏  杜敏  刘杉  梁颖  罗建伟
作者单位:湖北省肿瘤医院信息统计科,武汉 430079;湖北工业大学计算机学院
摘    要:目的 通过ARIMA乘积季节模型和LSTM神经网络模型拟合某三甲专科医院的月出院人次并进行预测,比较两种模型的预测效果.方法 运用某三甲专科医院2013—2018年度的月出院人次,分别构建ARIMA乘积季节模型和LSTM神经网络模型,然后利用所得的模型对2019年度的月出院人次进行预测并与实际数据进行比较.采用平均绝对...

关 键 词:ARIMA乘积季节模型  LSTM神经网络模型  出院人次

A comparative study of ARIMA and LSTM models in predicting hospital discharge number
WANG Shuping,LI Min,DU Min,LIU Shan,LIANG Ying,LUO Jianwei. A comparative study of ARIMA and LSTM models in predicting hospital discharge number[J]. Journal of Public Health and Preventive Medicine, 2021, 32(1): 18-21
Authors:WANG Shuping  LI Min  DU Min  LIU Shan  LIANG Ying  LUO Jianwei
Affiliation:(Information Department,Hubei Cancer Hospital,Wuhan 430079,China;School of Computer Science,Hubei University of Technology,Wuhan 430068,China)
Abstract:Objective To fit and predict the monthly discharge number of a specialist hospital using Autoregressive Integrated Moving Average model(ARIMA)and Long Short-Term Memory Neural Network model(LSTM),and compare the prediction effects of the two models.Methods ARIMA and LSTM models were constructed based on the monthly discharge number of a specialist hospital from 2013 to 2018.The resulting models were then used to predict the monthly discharge numbers in 2019,which were compared with actual data.The mean absolute percentage error(MAPE)was used to evaluate the prediction effect of these two models.Results The MAPE values of ARIMA and LSTM compared to actual data in 2019 were 7.90%and 14.26%,respectively.Conclusion The prediction effect of ARIMA was better than that of LSTM.The prediction results of ARIMA showed that the number of patients discharged from the specialist hospital in 2019 was increasing,which fit well with the actual data.
Keywords:ARIMA  LSTM  Discharge number
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号