首页 | 本学科首页   官方微博 | 高级检索  
检索        


Compressive Force Induces Osteoclast Differentiation via Prostaglandin E2 Production in MC3T3-E1 Cells
Abstract:In orthodontic tooth movement, prostaglandin E2 (PGE2) released from osteoblasts can alter the normal process of bone remodeling. We previously showed that compressive force (CF) controls bone formation by stimulating the production of PGE2 and Ep2 and/or Ep4 receptors in osteoblasts. The present study was undertaken to examine the effect of CF on the production of PGE2, cyclooxygenase-2 (COX-2), macrophage colony-stimulating factor (M-CSF), receptor activator of NF-κB ligand (RANKL), and osteoprotegerin (OPG) using osteoblastic MC3T3-E1 cells and to examine the indirect effect of CF on osteoclast differentiation using RAW264.7 cells as osteoclast precursors. MC3T3-E1 cells were cultured with or without continuous CF (1.0 or 3.0 g/cm2) for 24 hr, and PGE2 production was determined using ELISA. The expression of COX-2, M-CSF, RANKL, and OPG genes and proteins was determined using real-time PCR and ELISA, respectively. Osteoclast differentiation was estimated using tartrate-resistant acid phosphatase (TRAP) staining of RAW 264.7 cells cultured for 10 days with conditioned medium from CF-treated MC3T3-E1 cells and soluble RANKL. As CF increased, PGE2 production and the expression of COX-2, M-CSF, and RANKL increased, whereas OPG expression decreased. The number of TRAP-positive cells increased as CF increased. Celecoxib, a specific inhibitor of COX-2, blocked the stimulatory effect of CF on TRAP staining and the production of PGE2, M-CSF, RANKL, and OPG. These results suggest that CF induces osteoclast differentiation by increasing M-CSF production and decreasing OPG production via PGE2 in osteoblasts.
Keywords:Mechanical Stress  Osteoblasts  PGE2  Osteoclast Precursors  Osteoprotegerin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号