Abstract: | An application of high resolution scanning/transmission electron microscopy (STEM) and gold-labeling techniques for the rapid detection of human immunodeficiency virus (HIV) in infected cells has been developed. Experimental in vitro studies for detecting two HIV structural proteins, gp41 and p17, were performed following an indirect labeling procedure that uses monoclonal anti-p17 and anti-gp41 antibodies as primary antibodies and 40 nm gold-linked goat antimouse IgG as secondary antibodies. The cells were then studied by STEM in the scanning mode. Unambiguous localization of the viral antigens was possible by combining the three-dimensional image provided by the secondary electron image and the atomic number-dependent backscattered electron image for the identification of the gold marker. This technique combines both the morphological information and the rapid procedures of scanning electron microscopy with the precise and sensitive antigen detection provided by the use of STEM and immunological methods. The preliminary results of its application to the study of peripheral blood mononuclear cells from four anti-HIV-seropositive patients showing the presence of specific labeling in all of them suggest that it might prove useful for early detection of HIV infection before seroconversion, as well as for quantitative studies. |