Abstract: | As a result of repeated movement, tendons are functionally open to traumas. According to this situation, tenocytes have already been used for tissue engineering therapies. It has been reported that long-term monolayer (ML) culture of tenocytes may lead to a phenotypic drift within passages. Depending on our previously published work, it is clearly demonstrated that high-density (HD) culture improves cell growth and differentiation of tenocytes. However, it is not yet established if HD favors the differentiated state during long-term culture. Therefore, we compared the differences in gene expression of tendon collagens and tendon markers of tenocytes from long-term ML and HD culture conditions by quantitative, real-time polymerase chain reaction (QRT-PCR) for over a period of 3 weeks. COLI, COLIII, COLV, Scx, and Tnmd were target genes as the major matrix constituents of tendons as well as being involved in matrix integrity and tenocyte phenotype. According to our results, tenocytes in HD culture synthesized less amounts of COLIII, COLV, and Tnmd, and dependent on the investigation time point, higher amounts of Scx. We consider that tenocytes produced in HD culture system may not provide sufficient efficiency during tissue engineering approaches. By the fact that most molecules showed significantly higher expression profiles in ML culture condition, it is suggested that culture and passage in ML should be taken into consideration for further tissue engineering approaches to maintain a phenotype with less amount of drift. |