首页 | 本学科首页   官方微博 | 高级检索  
     


Role and mechanism of microRNA-21 in H2O2-induced apoptosis in bone marrow mesenchymal stem cells
Affiliation:1. Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China;2. Department of Neurosurgery, The People''s Hospital of Rugao, Jiangsu, Rugao 226500, China
Abstract:microRNA-21 (miR-21) contributes to anti-apoptosis, proliferation and migration in many cells, but its role in inhibiting apoptosis in bone marrow mesenchymal stem cells (BMSC) remains unclear. The aim of this study was to determine the role of miR-21 in H2O2-induced BMSC apoptosis. We used quantitative real time-polymerase chain reaction (RT-PCR) to demonstrate the level of miR-21 after treatment of BMSC with H2O2. BMSC apoptosis was induced by different concentrations of H2O2 and was decreased in miR-21-upregulated cells. The expression of PTEN, a functional target gene of miR-21 in BMSC, was regulated by miR-21. The RT-PCR results indicated that miR-21 was significantly up-regulated, and western blot analysis indicated that Bcl-2 was up-regulated, whereas the apoptosis-related genes caspase 3/9 and Bax were down-regulated in miR-21-up-regulated cells. The miR-21-up-regulated cells had significantly enhanced Akt phosphorylation, as measured by western blot analysis. LY294002, an inhibitor of Akt activation, abolished the protective effects of miR-21-up-regulated cells. These results suggest that miR-21 contributes to inhibition of apoptosis in BMSC by down-regulating PTEN, potentially via the PI3K/Akt pathway.
Keywords:Apoptosis  BMSC  miR-21  p-Akt  PTEN
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号