首页 | 本学科首页   官方微博 | 高级检索  
     


Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes
Authors:Richards Thomas A  Soanes Darren M  Jones Meredith D M  Vasieva Olga  Leonard Guy  Paszkiewicz Konrad  Foster Peter G  Hall Neil  Talbot Nicholas J
Affiliation:Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom. thomr@nhm.ac.uk
Abstract:Horizontal gene transfer (HGT) can radically alter the genomes of microorganisms, providing the capacity to adapt to new lifestyles, environments, and hosts. However, the extent of HGT between eukaryotes is unclear. Using whole-genome, gene-by-gene phylogenetic analysis we demonstrate an extensive pattern of cross-kingdom HGT between fungi and oomycetes. Comparative genomics, including the de novo genome sequence of Hyphochytrium catenoides, a free-living sister of the oomycetes, shows that these transfers largely converge within the radiation of oomycetes that colonize plant tissues. The repertoire of HGTs includes a large number of putatively secreted proteins; for example, 7.6% of the secreted proteome of the sudden oak death parasite Phytophthora ramorum has been acquired from fungi by HGT. Transfers include gene products with the capacity to break down plant cell walls and acquire sugars, nucleic acids, nitrogen, and phosphate sources from the environment. Predicted HGTs also include proteins implicated in resisting plant defense mechanisms and effector proteins for attacking plant cells. These data are consistent with the hypothesis that some oomycetes became successful plant parasites by multiple acquisitions of genes from fungi.
Keywords:osmotrophy   pseudofungi   lateral gene transfer
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号