首页 | 本学科首页   官方微博 | 高级检索  
检索        


Maitotoxin, a novel activator of mediator release from human basophils, induces large increases in cytosolic calcium resulting in histamine, but not leukotriene C4, release.
Authors:M Columbo  M Taglialatela  J A Warner  D W MacGlashan  T Yasumoto  L Annunziato  G Marone
Institution:Division of Clinical Immunology, University of Naples Federico II, Second School of Medicine, Italy.
Abstract:Maitotoxin (MTX) is a potent marine toxin which stimulates several Ca(++)-dependent processes presumably through an increase in Ca++ permeability. We have examined the effect of MTX on the release of chemical mediators from human basophils and its mechanism of action. MTX (1-20 ng/ml) induced histamine release (37-100%) from both mixed leukocyte preparations and purified basophils. Histamine release activated by MTX was slow (t 1/2 approximately equal to 15 min), temperature and Ca++ dependent (optimal at 37 degrees C and 1-2.5 mM Ca++). Sr++ ion could substitute for Ca++ in the secretory process. Digital video microscopy analysis of purified (> 70%) basophils revealed that MTX (1-20 ng/ml) induced a slow and marked increase of cytosolic Ca++ levels that was temporally coincident with histamine release. MTX (1-20 ng/ml) stimulated the release of sulfidopeptide leukotriene C4 from mixed leukocyte preparations (approximately equal to 0.5% basophils). However, purified basophils (77 +/- 7%) showed no sulfidopeptide leukotriene C4 release even in the presence of large histamine secretion (84 +/- 14%). Two organic Ca(++)-channel entry blockers, verapamil and diltiazem (1-30 microM) inhibited the release of histamine induced by MTX, whereas the dihydropyridine nifedipine (0.1-10 microM) caused only minimal inhibition. These results suggest that MTX represents a novel stimulus useful to study the role of Ca++ in human basophil mediator release.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号