首页 | 本学科首页   官方微博 | 高级检索  
检索        


Intracellular mechanisms of hydrogen peroxide-mediated neutrophil adherence to cultured human endothelial cells
Authors:Okayama N  Coe L  Oshima T  Itoh M  Alexander J S
Institution:Department of Molecular and Cellular Physiology, Louisiana State University Medical Center, Shreveport, Louisiana, 71130-3932, USA.
Abstract:We examined which endothelial second messengers are involved in peroxide-mediated endothelial-neutrophil adhesion with respect to endothelial P-selectin expression and platelet-activating factor (PAF). Peroxide (0.5 mM)-mediated adhesion was blocked by a protein kinase C (PKC) inhibitor, G?6976 (10 nM); an intracellular calcium chelator, TMB-8 (0.1 mM); and a protein kinase G (PKG) inhibitor, KT5823 (0.5 microM); but not by a tyrosine kinase inhibitor, genistein (1 microM), or a protein kinase A inhibitor, H-89 (0.1 microM). These data were consistent with the proadhesive effects of PMA (0.1 microM), a PKC activator; a calcium ionophore, A23187 (1 microM); and dibutyryl cGMP (0.5 and 1 mM); but not phenylarsine oxide (0.1 mM), a tyrosine phosphatase inhibitor, or dibutyryl cAMP (1 mM). Conversely, peroxide-mediated P-selectin expression was blocked by G?6976 and KT5823, but not by TMB-8. These data are strengthened by the observation that PMA and dibutyryl cGMP, but not A23187, increased P-selectin expression. WEB 2086 (10 microM), a PAF-receptor antagonist, blocked peroxide-, PMA-, and A23187-mediated adhesion, but not peroxide-mediated P-selectin expression. PAF itself (10 nM) stimulated adhesion, but not P-selectin expression. These data indicate that PKC and PKG are involved in peroxide-mediated neutrophil adhesion via P-selectin mobilization and PAF synthesis; however, intracellular calcium appears to mediate adhesion only through PAF synthesis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号