Abstract: | Spinal cord blood flow (SCBF) and the effect of end-tidal CO2 concentration (ETCO2) on SCBF (CO2 reactivity) were studied in the lumbar spinal cord of cats by means of the hydrogen-clearance technique Hydrogen gas was administered by inhalation, and its level in spinal cord tissue was estimated amperometrically with small (75 micrometers) platinum electrodes. The average SCBF's at normocapnia (ETCO2 = 4%) of the ventral horn gray matter and of the white matter at several locations were 43.2 and 16.2 ml . 100 gm-1 . min-1, respectively. For gray and white matter, the values of CO2 reactivity, estimated by the coefficient of the regression of SCBF (ml . 100 gm-1 . min-1) on ETCO2 (ml . 100 ml-1) were 11.6 and 2.1, respectively. No differences in SCBF or CO2 reactivity were observed between intact animals kept under N2O-O2 ventilation and decerebrated animals with no anesthesia. After an acute spinal section, ventral horn SCBF and CO2 reactivity (measured eight segments below the cordotomy) were not altered, in spite of the profound neural depression present (that is, spinal shock). Orthodromic (dorsal root) stimulation of the ventral horn neurons induced an average increase in blood flow of 128% above control values. Antidromic (ventral root) motoneuron activation failed to produce any significant changes in ventral horn blood flow. |