首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian consensus clustering for multivariate longitudinal data
Authors:Zihang Lu  Wendy Lou
Abstract:In clinical and epidemiological studies, there is a growing interest in studying the heterogeneity among patients based on longitudinal characteristics to identify subtypes of the study population. Compared to clustering a single longitudinal marker, simultaneously clustering multiple longitudinal markers allow additional information to be incorporated into the clustering process, which reveals co-existing longitudinal patterns and generates deeper biological insight. In the current study, we propose a Bayesian consensus clustering (BCC) model for multivariate longitudinal data. Instead of arriving at a single overall clustering, the proposed model allows each marker to follow marker-specific local clustering and these local clusterings are aggregated to find a global (consensus) clustering. To estimate the posterior distribution of model parameters, a Gibbs sampling algorithm is proposed. We apply our proposed model to the primary biliary cirrhosis study to identify patient subtypes that may be associated with their prognosis. We also perform simulation studies to compare the clustering performance between the proposed model and existing models under several scenarios. The results demonstrate that the proposed BCC model serves as a useful tool for clustering multivariate longitudinal data.
Keywords:Bayesian consensus clustering  disease clustering  integrative clustering  mixture model  multivariate longitudinal data
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号